Journal of the American Chemical Society
Article
S.; Maruoka, K. Org. Biomol. Chem. 2014, 12, 5388. (r) Ariafard, A.
ACS Catal. 2014, 4, 2896. (s) Jeong, J.; Patel, P.; Hwang, H.; Chang, S.
Org. Lett. 2014, 16, 4598. (t) Lu, B.; Wu, J.; Yoshikai, N. J. Am. Chem.
Soc. 2014, 136, 11598. (u) Wang, Z.; Li, L.; Huang, Y. J. Am. Chem.
Soc. 2014, 136, 12233.
Bioconjugate Techniques; 2nd ed.; Academic Press: San Diego, CA,
2008.
(31) Alkyne 19c was obtained using the corresponding EBX reagent
1n bearing a protected propargylic alcohol.
(32) Migdalof, B. H.; Antonaccio, M. J.; McKinstry, D. N.; Singhvi, S.
M.; Lan, S. J.; Egli, P.; Kripalani, K. J. Drug Metab. Rev. 1984, 15, 841.
(33) (a) Lee, A. W. M.; Yeung, A. B. W.; Yuen, M. S. M.; Zhang, H.;
Zhao, X.; Wong, W. Y. Chem. Commun. 2000, 75. (b) Matzger, A. J.;
Lewis, K. D.; Nathan, C. E.; Peebles, S. A.; Peebles, R. A.; Kuczkowski,
R. L.; Stanton, J. F.; Oh, J. J. J. Phys. Chem. A 2002, 106, 12110.
(c) Lewis, K. D.; Wenzler, D. L.; Matzger, A. J. Org. Lett. 2003, 5,
2195. (d) Lewis, K. D.; Rowe, M. P.; Matzger, A. J. Tetrahedron 2004,
60, 7191. (e) Gleiter, R.; Werz, D. B. Chem. Rev. 2010, 110, 4447.
(f) Su, Q.; Zhao, Z. J.; Xu, F.; Lou, P. C.; Zhang, K.; Xie, D. X.; Shi, L.;
Cai, Q. Y.; Peng, Z. H.; An, D. L. Eur. J. Org. Chem. 2013, 2013, 1551.
(34) At the current stage of development, the reaction is limited to
the synthesis of symmetrical diynes.
(15) (a) Lancer, K. M.; Wiegand, G. H. J. Org. Chem. 1976, 41, 3360.
(b) Wang, B. J.; Graskemper, J. W.; Qin, L. L.; DiMagno, S. G. Angew.
Chem., Int. Ed. 2010, 49, 4079. (c) Pinto de Magalhaes, H.; Luthi, H.
̃
̈
P.; Togni, A. Org. Lett. 2012, 14, 3830. (d) Malmgren, J.; Santoro, S.;
Jalalian, N.; Himo, F.; Olofsson, B. Chem.Eur. J. 2013, 19, 10334.
General reviews on hypervalent iodine: (e) Kita, Y.; Koser, G. F.;
Ochiai, M.; Tohma, H.; Varvoglis, A.; Wirth, T.; Zhdankin, V. V. In
Hypervalent Iodine Chemistry: Modern Developments in Organic
Synthesis; Topics in Current Chemistry; Springer: Berlin, 2002; Vol.
224. (f) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(g) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation,
Structure, and Synthetic Applications of Polyvalent Iodine Compounds.
Wiley: Weinheim, 2013.
(35) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(b) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 15.
(16) Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita,
(36) Gaussian 09, Revision D.01; Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Y. Tetrahedron 2009, 65, 10797.
(17) Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998, 54, 10927.
(18) (a) Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Shiro, M.;
Fujita, E. J. Am. Chem. Soc. 1986, 108, 8281. (b) Ochiai, M.; Ito, T.;
Takaoka, Y.; Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J. Chem.
Soc., Chem. Commun. 1990, 118.
(19) Bouma, M. J.; Olofsson, B. Chem.Eur. J. 2012, 18, 14242.
(20) The concerted nature of this mechanism can clearly be seen via
examination of the intrinsic reaction coordinate (IRC). Selected IRC
structures are provided in the Supporting Information.
(21) Computed free energies at the M06-2X/def2-TZVP//M06-2X/
def2-SVP level in implicit THF solvent (COSMO-RS) yielded the
same trends, albeit with a slightly lower energy difference between the
two pathways (Energy aTS1, 11.8 kcal/mol; bTS1, 20.1 kcal/mol;
difference, 8.3 kcal/mol. See Supporting Information for details.
(22) Computation of the transition state aTS1 for other nucleophiles
was also done in order to better understand the observed
chemioselectivity. With methanol and dimethyl phosphite, no
transition state could be located. Higher energies were observed for
methylamine and acetate as nucleophiles (+30.8 and +18.1 kcal/mol,
respectively). In contrast, a low energy transition state (+12.2 kcal/
mol) was observed in the case of deprotonated dimethyl phosphite.
Indeed, the facile alkynylation of this class of nucleophiles was recently
reported by our group (ref 14h). See Supporting Information for
details.
(23) Computed free energies at the M06-2X/def2-TZVP//M06-2X/
def2-SVP level in implicit THF solvent (COSMO-RS): aTS1, 18.9 kcal/
mol; bTS1, 20.8 kcal/mol; difference, 1.9 kcal/mol. In addition, the
difference in free energies obtained using B3LYP-dDsC and B3LYP-
D3 methods was situated in between the other results (4.3 and 3.3
kcal/mol, respectively). Nevertheless, the importance of the three-
atom concerted pathway should not be overestimated at this stage. See
Supporting Information for details.
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.:
Wallingford CT, 2009.
(37) Wheeler, S. E.; Houk, K. N. J. Chem. Theory Comput. 2010, 6,
395.
(38) (a) Steinmann, S. N.; Corminboeuf, C. J. Chem. Theory Comput.
2011, 7, 3567. (b) Steinmann, S. N.; Corminboeuf, C. J. Chem. Phys.
2011, 134, 044117. (c) Steinmann, S. N.; Corminboeuf, C. Chimia
2011, 65, 240. (d) Steinmann, S. N.; Corminboeuf, C. J. Chem. Theory
Comput. 2010, 6, 1990.
(39) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,
77, 3865. (b) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
(40) (a) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.;
Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J.
Comput. Chem. 2001, 22, 931. (b) Fonseca Guerra, C.; Snijders, J. G.;
te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.
(41) Klamt, A. WIREs Comput. Mol. Sci. 2011, 1, 699.
(42) (a) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.
(b) Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J.
Chem. Phys. 2007, 126, 144111. (c) For a discussion on the
advantages of iterative Hirshfeld charges see: Gonthier, J. F.;
Steinmann, S. N.; Wodrich, M. D.; Corminboeuf, C. Chem. Soc. Rev.
2012, 41, 4671.
(24) (a) Zhang, S.; Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc.
1995, 117, 602. (b) Romer, B.; Gatev, G. G.; Zhong, M.; Brauman, J. I.
̈
J. Am. Chem. Soc. 1998, 120, 2919.
(25) See Supporting Information for further details.
(43) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.;
Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.;
O’Neill, D. P.; DiStasio, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J.
O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S.
H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath,
P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.;
Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.;
Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C. P.; Kedziora, G.;
Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.;
Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y.
M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J.
E.; Woodcock, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.;
Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.;
(26) Kunz, T.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 1958.
(27) Braga, A. L.; Martins, T. L. C.; Silveira, C. C.; Rodrigues, O. E.
D. Tetrahedron 2001, 57, 3297.
(28) Thiol 14 was chosen as starting material due to its higher boiling
point and simpler NMR spectrum when compared to benzyl thiol (2).
Comppound 17d was obtained using the corresponding EBX reagent
1m bearing a free alcohol.
(29) (a) Driguez, H. Thiooligosaccharides in Glycobiology. In
Glycoscience Synthesis of Substrate Analogs and Mimetics; Springer
Verlag: Berlin, 1997; Vol. 187, pp 85−116. (b) Pachamuthu, K.;
Schmidt, R. R. Chem. Rev. 2005, 106, 160.
(30) (a) Lundblad, R. L. Chemical Reagents for Protein Modification;
3rd ed.; CRC Press: Boca Raton, FL, 2005. (b) Hermanson, G. T.
J
dx.doi.org/10.1021/ja5083014 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX