reported that the hydroxy group of catalyst (S)-1 was
crucial for obtaining high enantioselectivity in the conju-
gate additions of 3-substituted oxindoles. Based on this
observation, we became interested in the design of new
bifunctional phosphonium salts6,7 of type (S)-2 and (S)-3,
which possess an amide moiety instead of a hydroxy group.5
The acidity of the amide (NH) in these catalysts can be easily
tuned by introducing different substituents to the nitrogen
(XÀR). Additionally, the steric environment of the catalysts
(S)-2 and 3 can be controlled by tuning the steric size of the R
group on the amide moiety as well as the aryl methyl group
on the phosphorus (Figure 1). Here we report the design of
new effective bifunctional phosphonium salts for the asym-
metric sulfenylation8 and chlorination9 of β-ketoesters under
base-free phase-transfer conditions.4
phosphonium enolate intermediate, and the carbonyl
groups of N-(phenylthio)phthalimide can potentially in-
teract with the amide moiety (NH) of catalysts (S)-2 and 3
via hydrogen-bonding.2 Although several examples of asym-
metric sulfenylation of β-ketoesters have been reported,
none of them have succeeded in the sulfenylation of 1-oxo-
2-indanecarboxylate in a highly enantioselective manner.8
The reaction between tert-butyl 1-oxo-2-indanecarboxy-
late and N-(phenylthio)phthalimide in H2O/toluene (10:1)
took place in the presence of hydroxylated (S)-1a4e (1mol%)
at room temperature (25 °C) over 24 h and afforded the
sulfenylation product 4a in good yield with moderate en-
antioselectivity (82% yield, 42% ee, entry 1 in Table 1). On
the other hand, hydroxy-protected catalyst (S)-1b (R = Me)
gave the product 4a in low yield and enantioselectivity (29%
yield, 17% ee, entry 2). These results suggested that the
bifunctional design of the catalysts was benefiting the reac-
tion. The screening of different aryl methyl groups on the
phosphorus of (S)-1did not show significant improvement of
the enantioselectivity (entries 3 and 4). These results pro-
mpted us to examine the chiral bifunctional phosphonium
bromides possessing an amide moiety (S)-2 and 3, which
were easily synthesized from known chiral phosphine com-
pounds.10 To our delight, benzamide substituted catalyst
(S)-2a gave the product 4a with high enantioselectivity (92%
ee, entry 5), and further screening of the aryl methyl group of
the catalyst (2b and c, entries 6 and 7) improved the yield and
enantioselectivity further (98% yield, 94% ee, entry 7). A
change of the benzamide group in the catalyst to acetamide
(2d), pivalamide (2e), and sulfonamides (3a and b) reduced
both the yields and enantioselectivities (entries 8À11). These
results indicated that fine-tuning of the amide moiety of the
catalyst was important to achieve high enantioselectivity.
The absolute configuration of product 4a was determined by
X-ray diffraction analysis (Figure 2).11
Figure 1. Bifunctional quaternary phophonium salts and a possible
working model.
As a model reaction to examine the ability of bifunctional
phosphonium salts 1À3, the asymmetric sulfenylation of
1-oxo-2-indanecarboxylate with N-(phenylthio)phthalimide
was selected (Table 1). In this reaction, the β-ketoester is
activated by the phosphonium bromide to produce a
With an effective chiral bifunctional quaternary phos-
phonium salt (S)-2c in hand, we studied the substrate
generality of the asymmetric sulfenylation of various
1-oxo-2-indanecarboxylates under base-free phase-transfer
(9) (a) Hintermann, L.; Togni, A. Helv. Chim. Acta 2000, 83, 2425. (b)
Ibrahim, H.; Kleinbeck, F.; Togni, A. Helv. Chim. Acta 2004, 87, 605. (c)
Marigo, M.; Kumaragurubaran, N.; Jørgensen, K. A. Chem.;Eur. J.
2004, 10, 2133. (d) Shibata, N.; Kohno, J.; Takai, K.; Ishimaru, T.;
Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem., Int. Ed. 2005, 44,
4204. (e) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre,
P.; Sambri, L. Angew. Chem., Int. Ed. 2005, 44, 6219. (f) Shibatomi, K.;
Tsuzuki, Y.; Iwasa, S. Chem. Lett. 2008, 37, 1098. (g) Kawatsura, M.;
Hayashi, S.; Komatsu, Y.; Hayase, S.; Itoh, T. Chem. Lett. 2010, 39, 466.
(h) Qi, M.-H.; Wang, F.-J.; Shi, M. Tetrahedron: Asymmetry 2010, 21,
(6) For reviews on quaternary phosphonium salts, see: (a) Werner, T.
Adv. Synth. Catal. 2009, 351, 1469. (b) Enders, D.; Nguyen, T. V. Org.
Biomol. Chem. 2012, 10, 5327.
(7) For examples of chiral quaternary phosphonium salts as cata-
lysts, see: (a) Shioiri, T.; Ando, A.; Masui, M.; Miura, T.; Tatematsu, T.;
Bohsako, A.; Higashiyama, M.; Asakura, C. ACS Symp. Ser. 1997, 659,
136. (b) Dobrota, C.; Duraud, A.; Toffano, M.; Fiaud, J.-C. Eur. J. Org.
Chem. 2008, 2439. (c) He, R.; Wang, X.; Hashimoto, T.; Maruoka, K.
Angew. Chem., Int. Ed. 2008, 47, 9466. (d) Uraguchi, D.; Ueki, Y.; Ooi,
T. J. Am. Chem. Soc. 2008, 130, 14088. (e) Uraguchi, D.; Ueki, Y.; Ooi,
T. Science 2009, 326, 120. (f) Uraguchi, D.; Asai, Y.; Ooi, T. Angew.
Chem., Int. Ed. 2009, 48, 733. (g) He, R.; Ding, C.; Maruoka, K. Angew.
Chem., Int. Ed. 2009, 48, 4559. (h) Uraguchi, D.; Nakashima, D.; Ooi, T.
J. Am. Chem. Soc. 2009, 131, 7242. (i) Uraguchi, D.; Asai, Y.; Seto, Y.;
Ooi, T. Synlett 2009, 658. (j) Abraham, C. J.; Paull, D. H.;
Dogo-Isonagie, C.; Lectka, T. Synlett 2009, 1651. (k) Uraguchi, D.;
Kinoshita, N.; Ooi, T. J. Am. Chem. Soc. 2010, 132, 12240. (l) Zhu,
C.-L.; Zhang, F.-G.; Meng, W.; Nie, J.; Cahard, D.; Ma, J.-A. Angew.
Chem., Int. Ed. 2011, 50, 5869.
ꢀ
247. (i) Etayo, P.; Badorrey, R.; Dıaz-de-Villegas, M. D.; Galvez, J. A.
Adv. Synth. Catal. 2010, 352, 3329. (j) Cai, Y.; Wang, W.; Shen, K.;
Wang, J.; Hu, X.; Lin, L.; Liu, X.; Feng, X. Chem. Commun. 2010, 46,
1250. (k) Hintermann, L.; Perseghini, M.; Togni, A. Beilstein J. Org.
Chem. 2011, 7, 1421. (l) Jiang, J.-J.; Huang, J.; Wang, D.; Yuan, Z.-L.;
Zhao, M.-X.; Wang, F.-J.; Shi, M. Chirality 2011, 23, 272.
(m) Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J.
Am. Chem. Soc. 2012, 134, 9836. (n) Luo, J.; Wu, W.; Xu, L.-W.; Meng,
Y.; Lu, Y. Tetrahedron Lett. 2013, 54, 2623.
(10) (a) Sumi, K.; Ikariya, T.; Noyori, R. Can. J. Chem. 2000, 78, 697.
(b) Qi, M.-J.; Ai, T.; Shi, M.; Li, G. Tetrahedron 2008, 64, 1181. (c) Wei,
Y.; Ma, G.-N.; Shi, M. Eur. J. Org. Chem. 2011, 5146.
(11) The crystal structure of 4a has been deposited at the Cambridge
Crystallographic Data Centre (CCDC 935041). The data can be ob-
request/cif.
(8) (a) Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T. C.;
Jørgensen, K. A. Chem.;Eur. J. 2005, 11, 5689. (b) Jereb, M.; Togni, A.
Org. Lett. 2005, 7, 4041. (c) Jereb, M.; Togni, A. Chem.;Eur. J. 2007,
13, 9384. (d) Ishimaru, T.; Ogawa, S.; Tokunaga, E.; Nakamura, S.;
Shibata, N. J. Fluorine Chem. 2009, 130, 1049. (e) Fang, L.; Lin, A.; Hu,
H.; Zhu, C. Chem.;Eur. J. 2009, 15, 7039.
B
Org. Lett., Vol. XX, No. XX, XXXX