groups has been scarcely explored.7 In the context of our
studies on rhodium-catalyzed oxidative annulation,1m,3 we
succeded in finding that a series of phenylphosphinic acids
undergoes oxidative coupling with internal alkynes under
rhodium catalysis to achieve the single-step syntheses of
phosphaisocoumarin derivatives. A related oxidative cou-
pling between phosphine oxides and alkenesusing a similar
catalyst system is also disclosed herein.
Table 1. Reaction of Phenylphosphinic Acids 1 with Alkynes 2a
In an initial attempt, diphenylphosphinic acid (1a)
(0.25 mmol) was treated with 1 equiv of diphenylacetylene
(2a) (0.25 mmol) in the presence of [Cp*Rh(MeCN)3][SbF6]2
(1) Selected recent reviews for CÀH functionalization: (a) Colby,
D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012,
45, 814. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem.
Res. 2012, 45, 788. (c) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.;
Meerpoel, L.; Maes, B. U. W. Chem.;Eur. J. 2012, 18, 10092. (d)
Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40,
5068. (e) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc.
Rev. 2011, 40, 4740. (f) Kuninobu, Y.; Takai, K. Chem. Rev. 2011, 111,
1938. (g) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(h) Ackermann, L. Chem. Rev. 2011, 111, 1315. (i) Lapointe, D.;
Fagnou, K. Chem. Lett. 2010, 39, 1118. (j) Lyons, T. W.; Sanford,
M. S. Chem. Rev. 2010, 110, 1147. (k) Colby, D. A.; Bergman, R. G.;
Ellman, J. A. Chem. Rev. 2010, 110, 624. (l) Sun, C.-L.; Li, B.-J.; Shi,
Z.-J. Chem. Commun. 2010, 46, 677. (m) Satoh, T.; Miura, M. Chem.;
Eur. J. 2010, 16, 11212. (n) Satoh, T.; Miura, M. Synthesis 2010, 3395. (o)
Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed.
2009, 48, 5094. (p) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem.
Res. 2009, 42, 1074. (q) McGlacken, G. P.; Bateman, L. M. Chem. Soc.
Rev. 2009, 38, 2447. (r) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (s)
Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (t) Ferreira, E. M.; Zhang,
H.; Stoltz, B. M. Tetrahedron 2008, 64, 5987. (u) Park, Y. J.; Park, J.-W.;
Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (v) Beccalli, E. M.; Broggini,
G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (w)
Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (x)
Godula, K.; Sames, D. Science 2006, 312, 67. (y) Kakiuchi, F.; Chatani,
N. Adv. Synth. Catal. 2003, 345, 1077. (z) Dyker, G. Angew. Chem., Int.
Ed. 1999, 38, 1698.
(2) (a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (b)
Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
(3) Selected recent reports: (a) Unoh, Y.; Hirano, K.; Satoh, T.;
Miura, M. Tetrahedron 2013, 69, 4454. (b) Morimoto, K.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 9548. (c) Morimoto, K.;
Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2011, 40, 600. (d)
Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011,
76, 2867. (e) Umeda, N.; Hirano, K.; Satoh, T.; Shibata, N.; Sato, H.;
Miura, M. J. Org. Chem. 2011, 76, 13. (f) Mochida, S.; Umeda, N.;
Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744. (g)
Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12,
2068. (h) Mochida, S.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M.
Chem. Asian J. 2010, 5, 847. (i) Fukutani, T.; Umeda, N.; Hirano, K.;
Satoh, T.; Miura, M. Chem. Commun. 2009, 5141. (j) Mochida, S.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 6295. (k)
Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
3478.
(4) Selected examples: (a) Kim, D.-S.; Park, J.-W.; Jun, C.-H. Chem.
Commun. 2012, 48, 11334. (b) He, T.; Too, P. C.; Chen, R.; Chiba, S.;
Sun, H. Chem. Asian J. 2012, 7, 2090. (c) Li, B.-J.; Wang, H.-Y.; Zhu,
Q.-L.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51, 3948. (d) Jayakumar,
J.; Parthasawathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2012, 51,
197. (e) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846. (f) Wei,
X.; Zhao, M.; Du, Z.; Li, X. Org. Lett. 2011, 13, 4636. (g) Guimond, N.;
Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. (h)
Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc.
2011, 133, 2154. (i) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010,
12, 5688. (j) Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R. H.; Li, X.
J. Org. Chem. 2010, 75, 7487. (k) Hyster, T. K.; Rovis, T. J. Am. Chem.
Soc. 2010, 132, 10565. (l) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am.
Chem. Soc. 2010, 132, 9585. (m) Li, L.; Brennessel, W. W.; Jones, W. D.
J. Am. Chem. Soc. 2008, 130, 12414. (n) Guimond, N.; Fagnou, K.
J. Am. Chem. Soc. 2009, 131, 12050. (o) Stuart, D. R.; Bertrand-Laperle,
M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
(p) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 3645. See also reviews: (q) Patureau, F. W.; Wencel-Delord, J.;
Glorius, F. Aldrichim. Acta 2012, 45, 31. (r) Chiba, S. Chem. Lett. 2013,
41, 1554.
a Reaction conditions: 1 (0.25 mmol), 2 (0.38 mmol), [Cp*Rh-
(MeCN)3][SbF6]2 (0.01 mmol), AgOAc (0.75 mmol), in solvent (3 mL)
at 120 °C under N2 for 2 h. b Isolated yield based on the amount of 1 used.
Value in parentheses indicates GC yield. c With AgOAc (1 mmol). d With
2a (0.25 mmol). e [Cp*RhCl2
]
was used as a catalyst. f With AgOAc
2
(0.5 mmol). g 3h/isomer = 93:7.
(0.01 mmol) and AgOAc (1 mmol) as catalyst and oxidant,
respectively, in diglyme (3 mL) at 120 °C for 2 h under N2.
B
Org. Lett., Vol. XX, No. XX, XXXX