ACS Catalysis
Letter
Enabled by Chiral Acid Catalysis. J. Am. Chem. Soc. 2017, 139, 8570−
8578.
(4) Wang, H. Y.; Blaszczyk, S. A.; Xiao, G.; Tang, W. Chiral
Reagents in Glycosylation and Modification of Carbohydrates. Chem.
Soc. Rev. 2018, 47, 681−701.
(16) Lewis, C. A.; Miller, S. J. Site-selective derivatization and
remodeling of erythromycin A by using simple peptide-based chiral
catalysts. Angew. Chem., Int. Ed. 2006, 45, 5616−9.
(17) (a) Kwon, Y.; Li, J.; Reid, J. P.; Crawford, J. M.; Jacob, R.;
Sigman, M. S.; Toste, F. D.; Miller, S. J. Disparate Catalytic Scaffolds
for Atroposelective Cyclodehydration. J. Am. Chem. Soc. 2019, 141,
6698−6705. (b) Coelho, J. A. S.; Matsumoto, A.; Orlandi, M.; Hilton,
M. J.; Sigman, M. S.; Toste, F. D. Enantioselective Fluorination of
Homoallylic Alcohols Enabled by the Tuning of Non-Covalent
Interactions. Chem. Sci. 2018, 9, 7153−7158. (c) Biswas, S.; Kubota,
K.; Orlandi, M.; Turberg, M.; Miles, D. H.; Sigman, M. S.; Toste, F.
D. Enantioselective Synthesis of N,S-Acetals by an Oxidative
Pummerer-Type Transformation using Phase-Transfer Catalysis.
Angew. Chem., Int. Ed. 2018, 57, 589−593. (d) Yamamoto, E.;
Hilton, M. J.; Orlandi, M.; Saini, V.; Toste, F. D.; Sigman, M. S.
Development and Analysis of a Pd(0)-Catalyzed Enantioselective 1,1-
Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. J.
Am. Chem. Soc. 2016, 138, 15877−15880. (e) Milo, A.; Neel, A. J.;
Toste, F. D.; Sigman, M. S. A Data-Intensive Approach to
Mechanistic Elucidation Applied to Chiral Anion Catalysis. Science
2015, 347, 737−743.
(5) Giuliano, M. W.; Miller, S. J. Site-Selective Reactions with
Peptide-Based Catalysts. Top. Curr. Chem. 2015, 372, 157−201.
(6) (a) Kawabata, T.; Muramatsu, W.; Nishio, T.; Shibata, T.;
Schedel, H. A Catalytic One-Step Process for the Chemo- and
Regioselective Acylation of Monosaccharides. J. Am. Chem. Soc. 2007,
129, 12890−12895. (b) Schedel, H.; Kan, K.; Ueda, Y.; Mishiro, K.;
Yoshida, K.; Furuta, T.; Kawabata, T. Asymmetric Desymmetrization
of Meso-Diols by C-2-Symmetric Chiral 4-Pyrrolidinopyridines.
Beilstein J. Org. Chem. 2012, 8, 1778−1787. (c) Yanagi, M.;
Ninomiya, R.; Ueda, Y.; Furuta, T.; Yamada, T.; Sunazuka, T.;
Kawabata, T. Organocatalytic Site-Selective Acylation of 10-
Deacetylbaccatin III. Chem. Pharm. Bull. 2016, 64, 907−912.
(7) Lee, D.; Taylor, M. S. Borinic Acid-Catalyzed Regioselective
Acylation of Carbohydrate Derivatives. J. Am. Chem. Soc. 2011, 133,
3724−7.
(8) Shimada, N.; Nakamura, Y.; Ochiai, T.; Makino, K. Catalytic
Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective
Acylation of Carbohydrates. Org. Lett. 2019, 21, 3789−3794.
(9) Sun, X. X.; Lee, H.; Lee, S.; Tan, K. L. Catalyst Recognition of
Cis-1,2-Diols Enables Site-Selective Functionalization of Complex
Molecules. Nat. Chem. 2013, 5, 790−795.
(18) Santiago, C. B.; Guo, J. Y.; Sigman, M. S. Predictive and
Mechanistic Multivariate Linear Regression Models for Reaction
Development. Chem. Sci. 2018, 9, 2398−2412.
(19) (a) Reid, J. P.; Sigman, M. S. Comparing Quantitative
Prediction Methods for the Discovery of Small-Molecule Chiral
Catalysts. Nat. Rev. Chem. 2018, 2, 290−305. (b) Sigman, M. S.;
Harper, K. C.; Bess, E. N.; Milo, A. The Development of
Multidimensional Analysis Tools for Asymmetric Catalysis and
Beyond. Acc. Chem. Res. 2016, 49, 1292−1301.
(20) Reid, J. P.; Goodman, J. M. Goldilocks Catalysts: Computa-
tional Insights into the Role of the 3,3 ’ Substituents on the Selectivity
of BINOL-Derived Phosphoric Acid Catalysts. J. Am. Chem. Soc.
2016, 138, 7910−7917.
(21) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chiral Phosphoric
Acid Catalysis: from Numbers to Insights. Chem. Soc. Rev. 2018, 47,
1142−1158.
(22) Peng, Q.; Duarte, F.; Paton, R. S. Computing organic
stereoselectivity - from concepts to quantitative calculations and
predictions. Chem. Soc. Rev. 2016, 45, 6093−6107.
(23) (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular
Interactions from a Natural Bond Orbital, Donor-Acceptor View-
point. Chem. Rev. 1988, 88, 899−926. (b) Weinhold, F. Natural Bond
Orbital Analysis: A Critical Overview of Relationships to Alternative
Bonding Perspectives. J. Comput. Chem. 2012, 33, 2363−2379.
(24) Another challenge associated with site-selective functionaliza-
tions is achieving selectivity for all reactive sites. In this case, we were
not able to obtain site-selectivity for 3 with this catalyst system.
(25) (a) Leonardi, T.; Vanamala, J.; Taddeo, S. S.; Davidson, L. A.;
Murphy, M. E.; Patil, B. S.; Wang, N. Y.; Carroll, R. J.; Chapkin, R. S.;
Lupton, J. R.; Turner, N. D. Apigenin and Naringenin Suppress Colon
Carcinogenesis through the Aberrant Crypt Stage in Azoxymethane-
Treated Rats. Exp. Biol. Med. 2010, 235, 710−717. (b) Tripoli, E.; La
Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus
flavonoids: Molecular Structure, Biological Activity and Nutritional
Properties: A Review. Food Chem. 2007, 104, 466−479. (c) Celiz, G.;
Daz, M.; Audisio, M. C. Antibacterial Activity of Naringin Derivatives
Against Pathogenic Strains. J. Appl. Microbiol. 2011, 111, 731−738.
(d) Cushnie, T. P. T.; Lamb, A. J. Antimicrobial Activity of
Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343−356.
(10) (a) Xiao, G. Z.; Cintron-Rosado, G. A.; Glazier, D. A.; Xi, B.
M.; Liu, C.; Liu, P.; Tang, W. P. Catalytic Site-Selective Acylation of
Carbohydrates Directed by Cation-n Interaction. J. Am. Chem. Soc.
2017, 139, 4346−4349. (b) Blaszczyk, S. A.; Xiao, G.; Wen, P.; Hao,
H.; Wu, J.; Wang, B.; Carattino, F.; Li, Z.; Glazier, D. A.; McCarty, B.
J.; Liu, P.; Tang, W. S-Adamantyl Group Directed Site-Selective
Acylation: Applications in Streamlined Assembly of Oligosaccharides.
Angew. Chem., Int. Ed. 2019, 58, 9542−9546.
(11) Allen, C. L.; Miller, S. J. Chiral Copper(II) Complex-Catalyzed
Reactions of Partially Protected Carbohydrates. Org. Lett. 2013, 15,
6178−81.
(12) (a) Maity, P.; Pemberton, R. P.; Tantillo, D. J.; Tambar, U. K.
Bronsted Acid Catalyzed Enantioselective Indole Aza-Claisen
Rearrangement Mediated by an Arene CH-O Interaction. J. Am.
Chem. Soc. 2013, 135, 16380−16383. (b) Changotra, A.; Das, S.;
Sunoj, R. B. Reversing Enantioselectivity Using Noncovalent
Interactions in Asymmetric Dearomatization of beta-Naphthols:
The Power of 3,3′ Substituents in Chiral Phosphoric Acid Catalysts.
Org. Lett. 2017, 19, 2354−2357. (c) Seguin, T. J.; Wheeler, S. E.
Electrostatic Basis for Enantioselective Bronsted-Acid-Catalyzed
Asymmetric Ring Openings of meso-Epoxides. ACS Catal. 2016, 6,
2681−2688. (d) Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F.
D.; Sigman, M. S. Parametrization of Non-covalent Interactions for
Transition State Interrogation Applied to Asymmetric Catalysis. J.
Am. Chem. Soc. 2017, 139, 6803−6806. (e) Orlandi, M.; Hilton, M. J.;
Yamamoto, E.; Toste, F. D.; Sigman, M. S. Mechanistic Investigations
of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl
Acrylates. J. Am. Chem. Soc. 2017, 139, 12688−12695.
(13) Harada, S.; Kuwano, S.; Yamaoka, Y.; Yamada, K.; Takasu, K.
Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral
Phosphoric Acids. Angew. Chem., Int. Ed. 2013, 52, 10227−10230.
(14) For other CPA-catalyzed enantioselective acylations, see:
(a) Yang, H.; Zheng, W. H. Parallel Kinetic Resolution of
Unsymmetrical Acyclic Aliphatic syn-1,3-Diols. Org. Lett. 2019, 21,
5197−5200. (b) Shimoda, Y.; Yamamoto, H. Chiral Phosphoric Acid-
Catalyzed Kinetic Resolution via Amide Bond Formation. J. Am.
Chem. Soc. 2017, 139, 6855−6858.
(26) Fatykhov, R. F.; Khalymbadzha, I. A.; Chupakhin, O. N.;
Charushin, V. N.; Inyutina, A. K.; Slepukhin, P. A.; Kartsev, V. G. 1-
Nicotinoylbenzotriazole: A Convenient Tool for Site-Selective
Protection of 5,7-Dihydroxycoumarins. Synthesis 2019, 51, 3617−
3624.
(15) A competition experiment between a 1:1 molar ratio of
neopentyl alcohol and cyclohexanol under CPA-catalyzed acylation
gives a ratio of 7.0:1 of the acylation products in favor of neopentyl
(27) For examples of the complementary catalytic enantioselective
desymmetrizations of bis(phenols), see: (a) Lewis, C. A.; Gustafson, J.
L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen,
K. B.; Miller, S. J. A Case of Remote Asymmetric Induction in the
9798
ACS Catal. 2019, 9, 9794−9799