Journal of the American Chemical Society
Communication
(5) Clarke, M. L.; Diaz Valenzuela, M. B.; Slawin, A. M. Z.
Organometallics 2007, 26, 16. (b) Saudan, L. A.; Saudan, C.; Becieux,
C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473. (c) Ito, M.; Ikariya, T.
J. Synth. Org. Chem. Jpn. 2008, 66, 1042. (d) Ito, M.; Ootsuka, T.; Watari,
R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133,
4240. (e) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.;
Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res.
Dev. 2012, 16, 166. (f) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi,
T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133,
14960. (g) O, W. W. N.; Lough, A. J.; Morris, R. H. Chem. Commun.
2010, 46, 8240. (h) Han, Z.; Rong, L.; Wu, J.; Zheng, W.; Ding, K.
Angew. Chem., Int. Ed. 2012, 51, 13041. (i) Takebayashi, S.; Bergens, S.
H. Organometallics 2009, 28, 2349.
(6) (a) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed.
2012, 51, 2772. (b) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem.,
Int. Ed. 2013, 52, 1521.
(7) (a) Prakash, G. K. S.; Paknia, F.; Mathew, T.; Mloston, G.; Joschek,
J. P.; Olah, G. A. Org. Lett. 2011, 13, 4128. (b) Nie, J.; Li, X.-J.; Zheng,
D.-H.; Zhang, F.-G.; Cui, S.; Ma, J.-A. J. Fluorine Chem. 2011, 132, 468.
(c) Mimura, H.; Kawada, K.; Yamashita, T.; Sakamoto, T.; Kikugawa, Y.
J. Fluorine Chem. 2010, 131, 477. (d) Borkin, D. A.; Landge, S. M.;
Toeroek, B. Chirality 2011, 23, 612. (e) Petrik, V.; Roeschenthaler, G.-
V.; Cahard, D. Tetrahedron 2011, 67, 3254.
leading to the dihydrogen-bonded intermediate Int4 is very facile
(ΔG≠
= 6.6 kcal·mol−1). The dihydrogen bonding in the
298K
obtained DHB-adduct Int4 precedes the proton transfer (reverse
reaction) to afford the cationic dihydrogen complex Int3 being a
hydrogen-bonded ion pair. Such processes are well-documented
in the literature.17 The intermediate Int1 is further regenerated
by the reaction of Int4 with the ester and product 4b release into
solution. Thus the rate-determining transition state18 of the
catalytic cycle is the outer-sphere hydride transfer (TS1) and not
H2 cleavage.19
In conclusion, selective hydrogenation of fluorinated esters 2
with highly efficient bifunctional RuHCl(CO)(dpa) 1a or trans-
RuH2(CO)(dpa) 1b catalysts proceeded rapidly under mild
conditions to give the corresponding fluorinated alcohols in
almost quantitative yields. Under the optimized conditions, the
hemiacetals intermediates are obtainable from the reaction of α-
fluorinated esters in good to excellent yields. DFT analysis of the
selective hydrogenation of 2b suggests that the hydride transfer
from the dihydride complex 1b to the ester occurs in the outer-
sphere to produces a contact ion pair intermediate Int2. The
latter further coordinates the molecular hydrogen and affords the
final hemiacetal via intramolecular deprotonation, a step during
which H-H bond is cleaved.
(8) (a) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge,
H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85. (b) Nielsen, M.; Junge,
H.; Kammer, A.; Beller, M. Angew. Chem., Int. Ed. 2012, 51, 5711.
(c) Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, M.; Beller,
M. Angew. Chem., Int. Ed. 2011, 50, 9593.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedure and analysis details. This material is
■
S
(9) (a) Segraves, N. L.; Yazzie, D.; Deese, A. J. Magn. Reson. Chem.
́
2012, 50, 256. (b) Nikonorov, K. V.; Gurylev, E. A.; Shagidullin, R. R.;
Chernova, A. V. Russ. Chem. Bull. 1968, 17, 574.
(10) (a) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(b) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
(11) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10,
6615.
(12) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(13) Macchioni, A. Chem. Rev. 2005, 105, 2039.
The authors declare no competing financial interest.
(14) Dub, P. A.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 14960.
(15) (a) Batsanov, S. S. Inorg. Mater. 2001, 37, 871. (b) Nag, S.;
Banerjee, K.; Datta, D. New J. Chem. 2007, 31, 832. (c) Tatewaki, H.;
Hatano, Y.; Naka, T.; Noro, T.; Yamamoto, S. Bull. Chem. Soc. Jpn. 2010,
83, 1203.
ACKNOWLEDGMENTS
■
Research was financially supported by Grants-in-Aid for
Scientific Research (S) (22225004) from the Ministry of
Education, Culture, Sports, Science and Technology, Japan,
and partly supported by the GCOE Program. We acknowledge
Takasago Inter Corp for a gift of RuHCl(CO)(dpa) catalyst.
(16) (a) Gordon, J. C.; Kubas, G. J. Organometallics 2010, 29, 4682.
(b) Kubas, G. J. Chem. Rev. 2007, 107, 4152.
(17) (a) Filippov, O. A.; Belkova, N. V.; Epstein, L. M.; Lledos, A.;
Shubina, E. S. ChemPhysChem 2012, 13, 2677. (b) Belkova, N. V.;
Epstein, L. M.; Shubina, E. S. Eur. J. Inorg. Chem. 2010, 3555.
(c) Belkova, N. V.; Shubina, E. S.; Epstein, L. M. Acc. Chem. Res. 2005,
38, 624. (d) Epstein, L. M.; Shubina, E. S. Coord. Chem. Rev. 2002, 231,
165.
REFERENCES
■
(1) Recent reviews: (a) Tomashenko, O. A.; Grushin, V. V. Chem. Rev.
2011, 111, 4475. (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011,
473, 470. (c) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010,
49, 9322. (d) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (e) Kirk, K.
L. Org. Process Res. Dev. 2008, 12, 305. (f) S. Purser, P. R.; Moore, S.;
Swallow, V.; Gouverneur. Chem. Soc. Rev. 2008, 37, 320. (g) Muller, K.;
Faeh, C.; Diederich, F. Science 2007, 317, 1881. (h) Langlois, B. R.;
Billard, T.; Roussel, S. J. Fluorine Chem. 2005, 126, 173.
(2) Recent works: (a) Cai, X.; Tsuchikama, K.; Janda, K. D. J. Am.
Chem. Soc. 2013, 135, 2971. (b) Sladojevich, F.; Arlow, S. I.; Tang, P.;
Ritter, T. J. Am. Chem. Soc. 2013, 135, 2470. (c) Gao, J.-R.; Wu, H.;
Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. 2013, 135, 2983.
́
(d) Novak, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012,
134, 16167. (e) Tran, G.; Meier, R.; Harris, L.; Browne, D. L.; Ley, S. V.
J. Org. Chem. 2012, 77, 11071.
(3) Recent review: Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718 and
refs therein.
(4) (a) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem.,
Int. Ed. 2006, 45, 1113. (b) Gunanathan, C.; Milstein, D. Acc. Chem. Res.
2011, 44, 588. (c) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am.
Chem. Soc. 2005, 127, 10840.
(18) (a) Kozuch, S.; Martin, J. M. L. ACS Catal. 2012, 2, 2787.
(b) Kozuch, S.; Shaik, S. Acc. Chem. Res. 2010, 44, 101.
(19) (a) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough,
A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870. (b) Abdur-Rashid,
K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R.
H. J. Am. Chem. Soc. 2002, 124, 15104. (c) Di, T. D.; French, S. A.;
Catlow, C. R. A. J. Mol. Struct.: THEOCHEM 2007, 812, 39.
(d) Hamilton, R. J.; Leong, C. G.; Bigam, G.; Miskolzie, M.; Bergens,
S. H. J. Am. Chem. Soc. 2005, 127, 4152. (e) Hedberg, C.; Kaellstroem,
K.; Arvidsson, P. I.; Brandt, P.; Andersson, P. G. J. Am. Chem. Soc. 2005,
127, 15083. (f) Lei, M.; Zhang, W.; Chen, Y.; Tang, Y. Organometallics
2010, 29, 543. (g) Puchta, R.; Dahlenburg, L.; Clark, T. Chem.Eur. J.
2008, 14, 8898. (h) Rautenstrauch, V.; Hoang-Cong, X.; Churlaud, R.;
Abdur-Rashid, K.; Morris, R. H. Chem.Eur. J. 2003, 9, 4954.
(i) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J. Am. Chem.
Soc. 2003, 125, 13490. (j) Zimmer-De, I. M.; Morris, R. H. J. Am. Chem.
Soc. 2009, 131, 11263.
̈
D
dx.doi.org/10.1021/ja403852e | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX