transition metals is far less explored.5 To the best of
our knowledge there is only one report on a one-pot
Rh/Au dual-catalytic system in which the gold-catalyst is
a simple Au(III) halide precursor without any ligand
system on gold.6
conditions were suitable for a very fast Rh-catalyzed
conjugate addition. These conditions turned out to be
very general and allowed the synthesis of a large library
of racemic β-disubstituted ketones.
In order to study the metalꢀligand interactions of the
first one-pot Au(I)/Rh(I) system, we envisioned to use a
Au(I)-catalyzed MeyerꢀSchuster rearrangement of a pro-
pargyl alcohol 1 leading, with complete atom-economy,7
to the corresponding enone 2 followed by a Rh-catalyzed
boronic acid 1,4-addition to access β-disubstituted ketones
3 in a very rapid fashion from easily accessible starting
materials (Scheme 1).
Scheme 2. Racemic Au/Rh Sequential Tandem Sequence
Scheme 1. One-Pot Au(I)/Rh(I) Dual Catalysis
Control experiments combining the two transition me-
tals from the start of the reaction demonstrated that free
phosphine ligand employed in the first step slows down
the MeyerꢀSchuster rearrangement significantly, presum-
ably caused by the formation of the catalytic inactive
species [NHCAuL]þ (L = BINAP) (see the Supporting
Information).
At this stage, we invisioned using an orthogonal ligand
system on gold and rhodium while at the same time
developing an asymmetric tandem transformation by uti-
lizing a chiral diene ligand. Diene ligands are known to
efficiently bind to Rh(I),11 yet be very poor ligands for
Au(I),12 making them ideal for an orthogonal-ligand
system in this bimetallic tandem tranformation and also
unique in comparison to the well studied tandem-phos-
phine ligandꢀAu/M transformations.
While the classical MeyerꢀSchuster rearrangement8
requires harsh reaction conditions (strong acids and ele-
vated temperatures), there have been several reports on
much milder conditions employing Au catalysis starting
from propargyl acetates9 or more conveniently directly
from the corresponding propargyl alcohol.10
After initial screening experiments, we found reaction
conditions compatible with a sequential Au/Rh tandem
transformation (Scheme 2). Propargyl alcohol 1a was
transferred into product 3a by employing an NHC ligand
on the gold catalyst (3 mol % IPrAuNTf2) and a bidentate
phosphine ligand (5 mol % rac-BINAP) as a ligand on the
Rh-precursor. [(cod)RhOH]2 (2.5 mol %) was sufficient
to undergo the conjugate addition reaction to give 3a in
a remarkably high yield of 93% in a sequential one-pot
transformation. A solvent mixture of MeOH/H2O af-
forded a fast (ca. 1ꢀ2 h) and mild (room temperature)
Au-catalyzed MeyerꢀSchuster reaction, while the same
A ligand screening of several chiral diene ligands demon-
strated that there is no ligandꢀligand exchange between
the two metal centers and that Hayashi’s diene ligand L7 is
a very effcient ligand in inducing high enantioselectivies
(96% ee) in the 1,4-addition with this fairly challenging
substrate13 to yield 3a in moderate yields (Scheme 3). It is
noteworthy that there are not many dual-metal-catalyzed
tandem transformations involving an asymmetric reaction
step; in particular, there are no asymmetric dual-metal-
catalyzed transformations with one metal being gold.14
(5) (a) Hashmi, A. S. K.; Molinari, L. Organometallics 2011, 30, 3457.
(b) Dai, L. Z.; Shi, M. Chem.;Eur. J. 2010, 16, 2496. (c) Ye, L.; Zhang,
L. Org. Lett. 2009, 11, 3646. (d) Egi, M.; Yamaguchi, Y.; Fujiwara, N.;
Akai, S. Org. Lett. 2008, 10, 1867. (e) Milton, M. D.; Inada, Y.;
Nishibayashi, Y.; Uemura, S. Chem. Commun. 2004, 2712. For reviews
ꢀ
on bimetallic systems involving gold, see: (f) Perez-Temprano, M. H.;
Casares, J. A.; Espinet, P. Chem.;Eur. J. 2012, 18, 1864. (g) Hirner,
J. J.; Shi, Y.; Blum, S. A. Acc. Chem. Res. 2011, 44, 603.
(6) Aksin-Artok, O.; Krause, N. Adv. Synth. Catal. 2011, 353, 385.
Scheme 3. Ligand Optimization
€
(7) Trost, B. M. Science 1991, 254, 1471.
(8) Meyer, K. H.; Schuster, K. Chem. Ber. 1922, 55, 819.
(9) (a) de Haro, T.; Nevado, C. Chem. Commun. 2011, 47, 248.
(b) Zanoni, G.; D’Alfonso, A.; Porta, A.; Feliciani, L.; Nolan, S. P.;
Vidari, G. Tetrahedron 2010, 66, 7472. (c) Nun, P.; Gaillard, S.; Slawin,
A. M. Z.; Nolan, S. P. Chem. Commun. 2010, 46, 9113. (d) Hopkinson,
M. N.; Giuffredi, G. T.; Gee, A. D.; Gouverneur, V. Synlett 2010, 2737.
(e) Wang, D.; Ye, X.; Shi, X. Org. Lett. 2010, 12, 2088. (f) Marion, N.;
Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. (g) Marion, N.;
ꢀ
Carlqvist, P.; Gealageas, R.; de Fremont, P.; Maseras, F.; Nolan, S. P.
Chem.;Eur. J. 2007, 13, 6347.
ꢀ
(10) (a) Ramon, R. S.; Gaillard, S.; Slawin, A. M. Z.; Porta, A.;
D’Alfonso, A.; Zanoni, G.; Nolan, S. P. Organometallics 2010, 29, 3665.
ꢀ
(b) Ramon, R. S.; Marion, N.; Nolan, S. P. Tetrahedron 2009, 65, 1767.
(c) Engel, D. A.; Lopez, S. S.; Dudley, G. B. Tetrahedron 2008, 64, 6988.
(d) Lee, S. I.; Baek, J. Y.; Sim, S. H.; Chung, Y. K. Synthesis 2007, 2107.
(e) Engel, D. A.; Dudley, G. B. Org. Lett. 2006, 8, 4027.
B
Org. Lett., Vol. XX, No. XX, XXXX