ChemComm
Communication
In conclusion, we demonstrated that terpyridine–Zn2+ and
B21C7/secondary ammonium salt motifs recognize each other
in an orthogonal manner. Novel linear supramolecular poly-
mers 5 could be successfully constructed via the combination
of these two non-covalent recognition motifs, which were
confirmed by 1H NMR, UV/Vis, DOSY and viscosity measurements.
The resulting supramolecular polymers exhibit multi-stimuli
responsiveness capabilities, as triggered by heat, pH or a competi-
tive ligand, cyclen. Such adaptive assemblies would be an appealing
choice for further fabrication of intelligent supramolecular materials
with tailored properties.
Fig. 3 (a) Specific viscosities of the linear supramolecular polymers 5 (’),
2+
dimeric Zn(tpy)2 complex 3 ( ), and host–guest paired [3]pseudorotaxane 4
(
) (CHCl3–CH3CN (3/1, v/v), 293 K) as a function of terpyridine unit concen-
tration; (b) temperature-dependent specific viscosity of 5 at terpyridine unit
This work was supported by the National Natural Science
Foundation of China (21274139, 91227119), the Fundamental
Research Funds for the Central Universities, and the Anhui
Provincial Natural Science Foundation.
concentration of 90 mM.
Dynamic properties of the resulting supramolecular poly-
mers 5 were further evaluated with a variety of external stimuli.
Specific viscosity of the supramolecular polymers 5 reduces
significantly above 50 1C, indicating the disassembly of supra-
molecular polymers at elevated temperature (Fig. 3b). Detailed
1H NMR measurement reveals that host–guest interactions are
more susceptible to the temperature variation (Fig. 4a). More-
over, adding 1.5 equiv. of Et3N deprotonates the secondary
ammonium salt units, leading to the considerable reduction of
characteristic [3]pseudorotaxane signals and thereby breaking
up the supramolecular polymers 5 (Fig. 4c). Subsequent addition
of 2.8 equiv. of CF3COOH could almost restore the polymeric
assemblies (Fig. 4d), as reflected by the enhancement of com-
Notes and references
1 M. Garcia-Viloca, J. Gao, M. Karplus and D. G. Truhlar, Science, 2004,
303, 186.
2 (a) S. A. Levi, P. Guatteri, F. C. J. M. van Veggel, G. J. Vancso,
E. Dalcanale and D. N. Reinhoudt, Angew. Chem., Int. Ed., 2001,
40, 1892; (b) S.-L. Li, T. Xiao, C. Lin and L. Wang, Chem. Soc. Rev.,
2012, 41, 5950; (c) L. J. Marshall and J. de Mendoza, Org. Lett., 2013,
15, 1548; (d) C.-H. Wong and S. C. Zimmerman, Chem. Commun.,
2013, 49, 1679.
3 (a) B. Rybtchinski, ACS Nano, 2011, 5, 6791; (b) X. Yan, F. Wang,
B. Zheng and F. Huang, Chem. Soc. Rev., 2012, 41, 6042.
4 (a) H. Hofmeier, R. Hoogenboom, M. E. L. Wouters and
U. S. Schubert, J. Am. Chem. Soc., 2005, 127, 2913; (b) F. Wang,
C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li and F. Huang, J. Am.
Chem. Soc., 2008, 130, 11254; (c) S. K. Yang, A. V. Ambade and
M. Weck, J. Am. Chem. Soc., 2010, 132, 1637; (d) Y. Liu, Y. Yu, J. Gao,
Z. Wang and X. Zhang, Angew. Chem., Int. Ed., 2010, 49, 6576;
(e) F. Grimm, N. Ulm, F. Groehn, J. Duering and A. Hirsch,
Chem.–Eur. J., 2011, 17, 9478; ( f ) S.-L. Li, T. Xiao, Y. Wu, J. Jiang
and L. Wang, Chem. Commun., 2011, 47, 6903; (g) G. Groeger,
W. Meyer-Zaika, C. Boettcher, F. Groehn, C. Ruthard and
C. Schmuck, J. Am. Chem. Soc., 2011, 133, 8961; (h) Z. Zhang,
Y. Luo, J. Chen, S. Dong, Y. Yu, Z. Ma and F. Huang, Angew. Chem.,
Int. Ed., 2011, 50, 1397.
plexed benzylic protons H15 in the H NMR spectrum.12
1
On the other hand, metal–ligand interaction could also be
manipulated via the addition of a stronger Zn2+-chelating
agent, 1,4,7,10-tetraazacyclododecane (cyclen).13 Specifically,
adding 4 equiv. of cyclen results in the total disappearance of
Zn2+/tpy absorption bands (lmax = 343 nm). Furthermore,
reformation of supramolecular polymers 5 could be achieved
via the addition of equal amounts of Zn(OTf)2, as verified by the
reappearance of the Zn2+/tpy absorption band (Fig. 1b and
Fig. S15, ESI†). Hence, it is evident that supramolecular poly-
mers 5 are highly adaptive, capable of undergoing reversible
transitions under a variety of external stimuli.
5 K. P. Nair and M. Weck, Macromolecules, 2007, 40, 211.
6 (a) F. Wang, J. Zhang, X. Ding, S. Dong, M. Liu, B. Zheng, S. Li,
L. Wu, Y. Yu, H. W. Gibson and F. Huang, Angew. Chem., Int. Ed.,
2010, 49, 1090; (b) P. Du, J. Liu, G. Chen and M. Jiang, Langmuir,
2011, 27, 9602; (c) Y.-K. Tian, L. Chen, Y.-J. Tian, X.-Y. Wang and
F. Wang, Polym. Chem., 2013, 4, 453.
7 N. Hosono, M. A. J. Gillissen, Y. Li, S. S. Sheiko, A. R. A. Palmans and
E. W. Meijer, J. Am. Chem. Soc., 2013, 135, 501.
8 (a) C. Zhang, S. Li, J. Zhang, K. Zhu, N. Li and F. Huang, Org. Lett.,
2007, 9, 5553; (b) S. Dong, Y. Luo, X. Yan, B. Zheng, X. Ding, Y. Yu,
Z. Ma, Q. Zhao and F. Huang, Angew. Chem., Int. Ed., 2011, 50,
1905; (c) Z. Niu, F. Huang and H. W. Gibson, J. Am. Chem. Soc., 2011,
133, 2836; (d) B. Zheng, F. Wang, S. Dong and F. Huang, Chem. Soc.
Rev., 2012, 41, 1621.
9 (a) W. C. Yount, D. M. Loveless and S. L. Craig, Angew. Chem., Int.
Ed., 2005, 44, 2746; (b) W. C. Yount, D. M. Loveless and S. L. Craig,
J. Am. Chem. Soc., 2005, 127, 14488; (c) M. Burnworth, L. Tang,
J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and
C. Weder, Nature, 2011, 472, 334; (d) G. Du, E. Moulin, N. Jouault,
E. Buhler and N. Giuseppone, Angew. Chem., Int. Ed., 2012,
51, 12504.
10 N. Yamaguchi and H. W. Gibson, Chem. Commun., 1999,
789.
11 R. Dobrawa, M. Lysetska, P. Ballester, M. Gruene and F. Wurthner,
Macromolecules, 2005, 38, 1315.
12 L. Chen, Y.-K. Tian, Y. Ding, Y.-J. Tian and F. Wang, Macromolecules,
2012, 45, 8412.
13 B. Gruber, E. Kataev, J. Aschenbrenner, S. Stadlbauer and B. Koenig,
J. Am. Chem. Soc., 2011, 133, 20704.
Fig. 4 Partial 1H NMR spectra (300 MHz, CDCl3–CD3CN (3/1, v/v)) of a 1 : 2 : 1
mixture of Zn(OTf)2, 1 and 2 at terpyridine unit concentration of 36 mM: (a) 60 1C;
(b) 25 1C; (c) treating the mixture with 1.5 equiv. of Et3N at 25 1C; (d) subsequent
addition of 2.8 equiv. of CF3COOH.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5951--5953 5953