Communication
ChemComm
15 D. Mazzier, M. Crisma, M. De Poli, G. Marafon, C. Peggion,
J. Clayden and A. Moretto, J. Am. Chem. Soc., 2016, 138, 8007.
16 J. W. Checco, E. F. Lee, M. Evangelista, N. J. Sleebs, K. Rogers,
A. Pettikiriarachchi, N. J. Kershaw, G. A. Eddinger, D. G. Belair,
J. L. Wilson, C. H. Eller, R. T. Raines, W. L. Murphy, B. J. Smith,
S. H. Gellman and W. D. Fairlie, J. Am. Chem. Soc., 2015, 137, 11365.
17 C. Mayer, M. M. Mu¨ller, S. H. Gellman and D. Hilvert, Angew. Chem.,
2014, 126, 7098.
18 C. M. Grison, J. A. Miles, S. Robin, A. J. Wilson and D. J. Aitken,
Angew. Chem., 2016, 128, 11262.
19 B. B. Lao, I. Grishagin, H. Mesallati, T. F. Brewer, B. Z. Olenyuk and
P. S. Arora, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 7531.
introduction of the fluorescein motif interfering with the molecular
recognition features of 1.
In conclusion, we used Affimer display to identify for the
first time, peptide sequences with high affinity and selectivity
for aromatic oligoamide foldamers. The selected Affimers are
specific for a given foldamer sequence (e.g. 2 vs. 2rev) demon-
strating that the a-amino acid and N-alkylated aromatic amino
acids ‘‘codes’’ are compatible in terms of molecular recognition.
Moreover a diversity of binding modes can be selected for using
this approach including Affimers that recognise the foldamer,
or the foldamer and its biotin immobilisation linker. Rather
than considering this later selection product as undesirable,
the results emphasise the potential to elaborate complex 3D
architectures comprising natural and non-natural parts. Thus,
the work highlights more broadly, the potential of using phage
display to identify natural amino acid sequences that bind
to foldamers and adds to the synthetic biology ‘‘toolkit’’.7 Our
own future efforts will focus on using this approach in tandem
with chemo/bioinformatic analyses to identify potential disease
relevant peptide/protein targets for foldamers, and on the study
of the interaction between foldamer and the recognition deter-
mining sequences excised from the Affimer from which they
are derived.
´
20 Q. Gan, Y. Ferrand, C. Bao, B. Kauffmann, A. Grelard, H. Jiang and
I. Huc, Science, 2011, 331, 1172.
21 W. H. Jeong, H. Lee, D. H. Song, J.-H. Eom, S. C. Kim, H.-S. Lee,
H. Lee and J.-O. Lee, Nat. Commun., 2016, 7, 11031.
22 Z. E. Reinert, G. A. Lengyel and W. S. Horne, J. Am. Chem. Soc., 2013,
135, 12528.
23 J. Price, W. S. Horne and S. H. Gellman, J. Am. Chem. Soc., 2010,
132, 12378.
24 H. M. Werner, C. C. Cabalteja and W. S. Horne, ChemBioChem, 2016,
17, 712.
25 A. A. Fuller, D. Du, F. Liu, J. E. Davoren, G. Bhabha, G. Kroon,
D. A. Case, H. J. Dyson, E. T. Powers, P. Wipf, M. Gruebele and
J. W. Kelly, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 11067.
26 R. David, R. Gu¨nther, L. Baumann, T. Lu¨hmann, D. Seebach, H.-J.
Hofmann and A. G. Beck-Sickinger, J. Am. Chem. Soc., 2008, 130, 15311.
27 K. Kirshenbaum, I. S. Carrico and D. A. Tirrell, ChemBioChem, 2002,
3, 235.
28 U. Arnold, M. P. Hinderaker, B. L. Nilsson, B. R. Huck, S. H. Gellman
and R. T. Raines, J. Am. Chem. Soc., 2002, 124, 8522.
This work was supported by the European Research Council
[ERC-StG-240324], the Leverhulme Trust [RPG-2013-065] and
the EPSRC [EP/K039202/1]. We thank Dr Christian Tiede, Miss
Anna Tang, Mr Tom Taylor, Dr Claire M Grison and Dr Michael
E Webb for useful discussions.
¨
29 U. Arnold, M. P. Hinderaker, J. Koditz, R. Golbik, R. Ulbrich-
Hofmann and R. T. Raines, J. Am. Chem. Soc., 2003, 125, 7500.
30 A. Tam, U. Arnold, M. B. Soellner and R. T. Raines, J. Am. Chem. Soc.,
2007, 129, 12670.
31 G. M. Burslem, H. F. Kyle, A. L. Breeze, T. A. Edwards, A. Nelson,
S. L. Warriner and A. J. Wilson, Chem. Commun., 2016, 52, 5421.
32 L. Delauriere, Z. Dong, K. Laxmi-Reddy, F. Godde, J.-J. Toulme and
I. Huc, Angew. Chem., Int. Ed., 2012, 51, 473.
`
´
33 V. Azzarito, J. A. Miles, J. Fisher, T. A. Edwards, S. L. Warriner and
A. J. Wilson, Chem. Sci., 2015, 6, 2434.
34 A. Barnard, K. Long, H. L. Martin, J. A. Miles, T. A. Edwards,
D. C. Tomlinson, A. Macdonald and A. J. Wilson, Angew. Chem.,
Int. Ed., 2015, 54, 2960.
References
1 S. H. Gellman, Acc. Chem. Res., 1998, 31, 173.
2 G. Guichard and I. Huc, Chem. Commun., 2011, 47, 5933.
3 B. A. F. Le Bailly and J. Clayden, Chem. Commun., 2016, 52, 4852.
4 A. R. Thomson, C. W. Wood, A. J. Burton, G. J. Bartlett, R. B. 35 B. P. Orner, J. T. Ernst and A. D. Hamilton, J. Am. Chem. Soc., 2001,
Sessions, R. L. Brady and D. N. Woolfson, Science, 2014, 346, 485. 123, 5382.
5 J. M. Fletcher, R. L. Harniman, F. R. H. Barnes, A. L. Boyle, A. Collins, 36 V. Azzarito, K. Long, N. S. Murphy and A. J. Wilson, Nat. Chem.,
J. Mantell, T. H. Sharp, M. Antognozzi, P. J. Booth, N. Linden, 2013, 5, 161.
M. J. Miles, R. B. Sessions, P. Verkade and D. N. Woolfson, Science, 37 C. Tiede, A. Tang, S. Deacon, U. Mandal, J. Nettleship, R. Owen,
2013, 340, 595.
R. Owens, D. Tomlinson and M. McPherson, Protein Eng., Des. Sel.,
2014, 27, 145.
38 H. F. Kyle, K. F. Wickson, J. Stott, G. M. Burslem, A. L. Breeze,
C. Tiede, D. C. Tomlinson, S. L. Warriner, A. Nelson, A. J. Wilson
and T. A. Edwards, Mol. BioSyst., 2015, 11, 2738.
6 A. J. Burton, A. R. Thomson, W. M. Dawson, R. L. Brady and
D. N. Woolfson, Nat. Chem., 2016, 8, 837.
7 E. H. C. Bromley, K. Channon, E. Moutevelis and D. N. Woolfson,
ACS Chem. Biol., 2008, 3, 38.
8 S. E. Boyken, Z. Chen, B. Groves, R. A. Langan, G. Oberdorfer, 39 R. Sharma, S. E. Deacon, D. Nowak, S. E. George, M. P. Szymonik,
A. Ford, J. M. Gilmore, C. Xu, F. DiMaio, J. H. Pereira, B. Sankaran,
G. Seelig, P. H. Zwart and D. Baker, Science, 2016, 352, 680.
A. A. S. Tang, D. C. Tomlinson, A. G. Davies, M. J. McPherson and
¨
C. Walti, Biosens. Bioelectron., 2016, 80, 607.
9 S. Gonen, F. DiMaio, T. Gonen and D. Baker, Science, 2015, 348, 1365. 40 A. E. Rawlings, J. P. Bramble, A. A. S. Tang, L. A. Somner,
10 P.-S. Huang, G. Oberdorfer, C. Xu, X. Y. Pei, B. L. Nannenga,
J. M. Rogers, F. DiMaio, T. Gonen, B. Luisi and D. Baker, Science,
2014, 346, 481.
11 D. A. Uhlenheuer, K. Petkau and L. Brunsveld, Chem. Soc. Rev., 2010,
39, 2817.
12 P. S. P. Wang, J. B. Nguyen and A. Schepartz, J. Am. Chem. Soc., 2014,
136, 6810.
A. E. Monnington, D. J. Cooke, M. J. McPherson, D. C. Tomlinson
and S. S. Staniland, Chem. Sci., 2015, 6, 5586.
41 M. Raina, R. Sharma, S. E. Deacon, C. Tiede, D. Tomlinson,
A. G. Davies, M. J. McPherson and C. Walti, Analyst, 2015, 140, 803.
42 A. Barnard, K. Long, D. J. Yeo, J. A. Miles, V. Azzarito, G. M. Burslem,
P. Prabhakaran, T. A. Edwards and A. J. Wilson, Org. Biomol. Chem.,
2014, 12, 6794.
13 V. E. Campbell, X. de Hatten, N. Delsuc, B. Kauffmann, I. Huc and 43 F. Campbell, J. Plante, T. A. Edwards, S. L. Warriner and A. J. Wilson,
J. R. Nitschke, Nat. Chem., 2010, 2, 684. Org. Biomol. Chem., 2010, 8, 2344.
14 M. De Poli, W. Zawodny, O. Quinonero, M. Lorch, S. J. Webb and 44 K. Long, T. A. Edwards and A. J. Wilson, Bioorg. Med. Chem., 2013,
J. Clayden, Science, 2016, 352, 575.
21, 4034.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017