ChemComm
Communication
This work was financially supported by grants from the National
973 Program (2012CB722602), and the Shenzhen Municipal govern-
ment (JC201104210112A and GJHZ201206-14144733420), and the
Shenzhen Peacock Program (KQTD201103).
Notes and references
1 (a) I. Escher and F. Glorious, Sci. Synth., 2007, 25, 733; (b) D. R. Buckle
and I. L. Pinto, In Comprehensive Organic Synthesis, ed. B. M. Trost,
I. Fleming, Elsevier, Oxford, 1991, vol. 7, p. 119; (c) R. C. Larock,
Comprehensive Organic Transformations, John Wiley & Sons, New York,
1999, p. 251.
Scheme 3 Proposed reaction mechanism.
2 (a) K. C. Nicolaou, Y.-L. Zhong and P. S. Baran, J. Am. Chem. Soc.,
2000, 122, 7596; (b) K. C. Nicolaou, T. Montagnon, P. S. Baran and
Y.-L. Zhong, J. Am. Chem. Soc., 2002, 124, 2245.
3 (a) Y. Izawa, D. Pun and S. S. Stahl, Science, 2011, 333, 209;
(b) T. Diao and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 14566;
(c) T. Diao, T. J. Wadzinski and S. S. Stahl, Chem. Sci., 2012, 3, 887;
(d) D. Pun, T. Diao and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 8213;
(e) T. Diao, D. Pun and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 8205.
4 W. Gao, Z. He, Y. Qian, J. Zhao and Y. Huang, Chem. Sci., 2012,
3, 883.
5 Y. Ito, T. Hirao and T. Saegusa, J. Org. Chem., 1978, 43, 1011.
6 For recent examples of total synthesis using Saegusa oxidation, see:
(a) A. R. Angeles, S. P. Waters and S. J. Danishefsky, J. Am. Chem.
Soc., 2008, 130, 13765; (b) S. P. West, A. Bisai, A. D. Lim,
R. R. Narayan and R. Sarpong, J. Am. Chem. Soc., 2009, 131, 11187;
(c) Y. Zhang and S. J. Danishefsky, J. Am. Chem. Soc., 2010, 132, 9567;
(d) S. Yamashita, K. Iso, K. Kitajima, M. Himuro and M. Hirama,
J. Org. Chem., 2011, 76, 2408; (e) F. R. Petronijevic and P. Wipf, J. Am.
Chem. Soc., 2011, 133, 7704; ( f ) E. Alonso, H. Fuwa, C. Vale, Y. Suga,
was zero order with respect to the catalyst and first order to the
substrate concentration (see the ESI† for detailed kinetic studies).
A reaction under an 18O2 balloon did not result in the incorporation
of any 18O in the product. Instead, TBS 18OH was detected as the
major silicon by-product by HRMS, with a negligible isotope effect
(K16O/18O = 1.05). No 18O was found within the catalyst framework.
A further experiment involving the use of a fully deuterated substrate
yielded an isotope effect of KH/D = 1.27, suggesting that the C–H bond
cleavage was not involved in the rate limiting step.
Based on the experimental data provided above and informa-
tion from the literature, we speculate a singlet oxygen mechanism
for this transformation. Eosins are known to excite molecular
oxygen from its triplet state to its singlet state under light
radiation.12 An ene reaction between the singlet oxygen and the
silyl enol ether through intermediate A (Scheme 3) to generate
a hydroperoxy silyl hemiacetal B has been reported.13 This inter-
mediate B might undergo an intramolecular silyl transfer to release
the desired product together with hydroperoxysilane, which would
decompose to form O2 and silanol. It is noteworthy that in contrast
to conventional photosensitized singlet oxygen protocols, which
require intense light sources (such as 300 W Hg lamps or photo-
reactors), the current oxidation reaction relies on simple exposure
to a household light source to initiate the oxidation, possibly
due to direct conversion of the hydroperoxysilane to singlet
oxygen catalyzed by Eosin Y*. An in-depth mechanistic study is
currently underway in our laboratories to fully elucidate the
mechanism of this reaction.
´
T. Goto, Y. Konno, M. Sasaki, F. M. LaFerla, M. R. Vieytes, L. Gimenez-
Llort and L. M. Botana, J. Am. Chem. Soc., 2012, 134, 7467.
7 (a) G. Stork and P. F. Hudrlik, J. Am. Chem. Soc., 1968, 90, 4464;
(b) H. O. House, L. J. Czuba, M. Gall and H. D. Olmstead, J. Org.
Chem., 1969, 34, 2324; (c) F. A. Carey and R. J. Sundberg, Advanced
Organic Chemistry; Part B, Springer, New York, 5th edn, 2006.
8 For leading references on catalytic Saegusa oxidation, see:
(a) R. C. Larock, T. R. Hightower, G. A. Kraus, P. Hahn and
D. Zheng, Tetrahedron Lett., 1995, 36, 2423; (b) J. Tsuji, I. Minami
and I. Shimizu, Tetrahedron Lett., 1983, 24, 5635; (c) J.-Q. Yu,
H.-C. Wu and E. J. Corey, Org. Lett., 2005, 7, 1415; for recent
examples, see: (d) M. G. Lauer, W. H. Henderson, A. Awad and
J. P. Stambuli, Org. Lett., 2012, 14, 6000; (e) Y. D. Lu, N. Y. Long,
L. Nicolas and H. Lebel, J. Org. Chem., 2013, 78, 776.
9 (a) K. Tanino, M. Takahashi, Y. Tomata, H. Tokura, T. Uehara,
T. Narabu and M. Miyashita, Nat. Chem., 2011, 3, 484;
(b) B. Schmalzbauer, J. Herrmann, R. Mu¨ller and D. Menche, Org.
Lett., 2013, 15, 964.
10 M. T. Pirnot, D. A. Rankic, D. B. C. Martin and D. W. C. MacMillan,
Science, 2013, 339, 1593.
In summary, we have developed a novel method for the synthesis 11 (a) J. O. Bunte, E. K. Heilmann, B. Hein and J. Mattay, Eur. J. Org.
Chem., 2004, 3535; (b) P. V. Pham, D. A. Nagib and D. W. C.
MacMillan, Angew. Chem., Int. Ed., 2011, 50, 6119.
12 (a) M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 351;
of a,b-unsaturated ketones and aldehydes from their corresponding
silyl enol ethers in a straightforward manner involving a visible-light
organocatalytic, aerobic oxidation reaction. This protocol has several
practical advantages over the existing procedures for the synth-
esis of a,b-unsaturated carbonyl compounds: it is metal-free,
uses an inexpensive commercial catalyst, requires only ultralow
catalyst loading, operates under aerobic conditions, uses ethanol
as a low toxicity solvent, and operates effectively at ambient or
even lower temperatures.
(b) F. Stracke, M. Heupel and E. Thiel, J. Photochem. Photobiol., A,
1999, 126, 51; (c) V. P. Srivastava, A. K. Yadav and L. S. Yadav, Synlett,
¨
2013, 465; (d) D. P. Hari and B. Konig, Org. Lett., 2011, 13, 3852.
13 (a) M. Stratakis and M. Orfanopoulos, Tetrahedron, 2000, 56, 1595;
(b) C. S. Foote, Pure Appl. Chem., 1971, 27, 635; (c) K. H. Shulte-Elte
and V. Rautenstrauch, J. Am. Chem. Soc., 1980, 102, 1738;
(d) W. Adam and J. Fierro, J. Org. Chem., 1978, 43, 1159;
(e) E. Friedrich and W. Lutz, Chem. Ber., 1980, 113, 1245;
( f ) W. Adam and X. Wang, Tetrahedron Lett., 1990, 319, 1245.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.