3
and styrene in the repertoire of chemistry and biology might be
paved with the implementation of our developed strategy.
13
14
68
72
3m
Acknowledgments
We sincerely thank Emerging Science Society (ESS01/2018)
for financial support as well as SAIF, CDRI, Lucknow and IISc
Bangalore for providing microanalyses and spectra.
3n
References
On the basis of our observations and the literature reports,
[57] a plausible mechanistic pathway is depicted in Scheme 2. It
has been illustrated that the anionic forms of eosin Y were the
active catalysts that promote SET-based redox catalytic cycles in
majority of previous studies, where neutral eosin Y was
considered inactive [68,69]. In order to elucidate the actual
species of eosin Y in the HAT-based catalytic cycle, various
control experiments were performed in presence of blue LED
with excellent yield [70]. The formation of a carbon-centered
radical was promoted by visible-light activated *eosin Y through
a HAT process. The derived carbon radical was subsequently
trapped by an electron deficient styrene to selectively form
radical adduct B. The RHAT process between eosin Y-H II and
radical B exhibited a high free energy barrier (path a). Instead,
another amine molecule and radical B might undergo a reversible
HAT process to deliver the desired product, followed by RHAT
between amine radical A and eosin Y-H II to regenerate ground
state eosin Y catalyst (path b).
1. J. W. Beatty, C. R. J. Stephenson, Acc. Chem. Res. 48 (2015)
1474.
2. V. Froidevaux, C. Negrell, S. Caillol, J. P. Pascault, B. Boutevin,
Chem. Rev. 116 (2016) 14181.
3. B. Dutcher, M. Fan, A. G. Russell, ACS Appl. Mater. Interfaces, 7
(2015) 2137.
4. P. Kittakoop, C. Mahidol, and S. Ruchirawat, Curr. Top. Med.
Chem. 14 (2014) 239.
5. T. P. Cushnie, B. Cushnie, A. J. Lamb, Int. J. Antimicrobial.
Agents 44 (2014) 377.
6. S. Funayama, G. A. Cordell, Eds.; Academic Press: Waltham,
MA, 2014.
7. S. A. Lawrence, Amines:ꢀSynthesis, Properties and Applications
Cambridge University Press, 2004.
8. K. S. Hayes, Applied Catalysis A: General, 2001, 221, 187.
9. C. Le, Y. Liang, R. W. Evans, X.Li, D. W. C. MacMillan, Nature
547 (2017) 79.
10. D. Vasu, A. L. F. de Arriba, J. A. Leitch, A. de Gombert, D. J.
Dixon, Chem. Sci. 10 (2019) 3401.
11. R. N. Salvatore,C. H. Yoon, K. W. Jung, Tetrahedron 57 (2004)
7785.
12. A. Hager, N. Vrielink, D. Hager, J. Lefranc, D. Trauner, Nat.
Prod. Rep. 33 (2016) 491.
13. A. Chandy, A. S. Thakur, R. Panik P Tiwari, Medicinal Chemistry
& Drug Discovery 4(2) (2013) 108.
14. M. Sun, C. Y. Hong, C. Y. Pan, J. Am. Chem. Soc. 134 (51)
(2012) 20581.
15. M. Zhang, T. Li, D. Li, D. Yi, Journal of Chemical and
Pharmaceutical Research 6 (7) (2014) 2584.
16. Promethazine Hydrochloride Monograph for Professionals".
Drugs.com. American Society of Health-System Pharmacists.
Retrieved 24 October 2018.
17. G. Goissisa, M. H. de Sousa, Materials Research 12 (1) (2009) 69.
18. D. H. Jornada, G. F. S. Fernandes, D. E. Chiba, T. R. F. de Melo,
J. L. dos Santos, M. C. Chung, Molecules 21 (42) (2016)
doi:10.3390/molecules21010042.
19. G. W. Sluggett, T. Zelesky, E. M. Hetrick, Y. Babayan, S. W.
Baertschi, Journal of Pharmaceutical and Biomedical Analysis 149
(2018) 206.
20. J. W. Tucker, C. J. R. Stephenson, J. Org. Chem. 77 (4) (2012)
1617.
21. D. R. Heitz, K. Rizwan G. A. Molander, J. Org. Chem. 81(16)
(2016) 7308.
22. L. Capaldo, D. Ravelli, Eur. J. Org. Chem. (2017) 2056.
23. H. Chen, L. Guo, Shouyun Yu, Org. Lett. 20 (19) (2018), 6255.
24. X. Sala, I. Romero, M. Rodriguez, L. Escriche, A. Llobet, Angew.
Chem. Int. Ed. 48 (16) (2009) 2842.
25. D. Mandler, I. Willner, J. Am. Chem. Soc. 106 (18) (1984) 5352.
26. O. Ishitani, S. Yanagida, S. Takamuku C. Pac, J. Org. Chem. 52
(13) (1987) 2790.
27. A. Inagakia, M. Akita, Coord. Chem. Rev. 254 (2010) 1220.
28. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 113
(7) (2013) 5322.
Scheme 2. Plausible mechanistic pathway.
29. D. A. Nicewicz, T. M. Nguyen, ACS Catal. 4 (1) (2014) 355.
30. J. Xie, H. Jina, P. Xu, C. Zhu, Tetrahedron Lett. 55 (1) (2014), 36.
31. X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43 (1) (2014), 473.
32. J. Hu, J. Wang, T. H. Nguyen, N. Zheng, Beilstein J. Org. Chem.
9 (2013) 1977.
33. D. Rovelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 42 (1) (2013)
97.
34. T. P. Yoon, M. A. Ischay, J. J. Du, Nat. Chem. 2 (7) (2010) 527.
35. X. J. Yang, B. Chen, L. Q. Zheng, L. Z. Wu, C. H. Tung, Green
Chem. 16 (2014) 1082.
In conclusion, we have developed
a novel, one-pot
photocatalysed C(sp3)−H alkylation of amine substrates using
eosin Y as a catalyst via direct HAT. Thus, it is a superior
alternative to the existing method with respect to green and
sustainable chemistry (better atom and step-economy). Due to
metal-free, readily available, eco-sustainable, economical nature
and in addition to light absorption in the visible region makes
eosin Y an ideal direct HAT photocatalyst. Thus, it would
become a novel protocol for coupling between amine substrate
36. . idaly, C. Ceballos, A. al ui res, M. S. I. Veitia, A. Guy C.
Ferroud, Green Chem. 14 (2012) 1293.