incorporated as ring components, would be atom-economical
for the synthesis of heterocycles. However, to the best of
our knowledge, there are only two reports on this type of
palladium-catalyzed reaction: the synthesis of tetracyclic
quinazolines by Curran5c and of indoles by Takahashi.5d
derivatives,10 and direct construction of the 3-acylindole
skeleton from acyclic precursors has received less atten-
tion.11 We envisioned that the reaction shown in eq 2
could be a new approach for the direct construction of
3-acyl-2-arylindoles, using both the C and N atoms of the
isocyanide. In this letter, we describe the synthesis of 3-acyl-
2-arylindoles using palladium-catalyzed isocyanide inser-
tion and oxypalladation of an alkyne.
Scheme 1. Synthesis of 3-Acyl-2-arylindole via Palladium-
catalyzed Isocyanide Insertion and Oxypalladation of Alkyne
Our initial efforts focused on optimization of the reac-
tion conditions, using 2a and 3a (Table 1). Treatment
of 2a and 3a with 10 mol % Pd(OAc)2, 20 mol %
di(1-adamantyl)-n-butylphosphine (Ad2PnBu) and 3 equiv
of Cs2CO3 in toluene at 100 °C gave the indole 1a in 43%
yield (entry 1). The addition of 10 equiv of H2O accelerated
the reaction and increased the yield of 1a to 61% (entry 2).
Next, several bases were screened; it was found that car-
bonates were effective, and Cs2CO3 gave the best results in
thisreaction(entries 2À7). WhenN,N-dimethylformamide
(DMF) was used insteadoftoluene, the reactionproceeded
effectively and the product 1a was obtained in 80% yield
(entry 8). Lowering the amount of the catalyst did not
significantly influence the yields, using DMF as a solvent
without H2O (entry 9). Finally, screening of various ligands
revealed that Ad2PnBu was the best ligand (entries 10À13).
The conditions used in entry 9 were therefore the best for
this reaction.
Weinvestigatedthesubstratescope of the reaction under
the optimal conditions (Scheme 2). Initially, various aryl
iodides were used as the coupling partner. The reactions of
aryl iodides bearing electron-donating groups and chlorine
at the para position gave the desired products 1bÀ1d in
good yields. Strong electron-withdrawing groups such as
ester, nitrile, and trifluoromethyl groups decreased the
yields of products 1eÀ1g. Introducing a methyl group
at the meta and ortho positions maintained high yields
(1h and 1i). Next, the reaction was performed using several
o-alkynylphenyl isocyanides. The reactions of substrates
bearing chloro and methoxy groups at the para position
of the isocyanide gave the corresponding products 1j and
1k in 41 and 69% yields, respectively. The electronic state
of the alkyne did not significantly influence the reaction
(1l and 1m).
Recently, we reported a palladium-catalyzed cascade
process consisting of sequential insertions of an isocyanide
and analkyne, and C(sp3)ÀH activation toformpolycyclic
carbazoles.6 During this reaction, we obtained 3-acyl-2-
arylindole 1 as a byproduct (Scheme 1, eq 1). We supposed
that addition of the oxygen nucleophile to the alkyne,7,8
activated by internal imidoylpalladium, followed by CÀC
reductive elimination, gave 3-acyl-2-arylindole 1 (Scheme 1,
eq 2). The indole moiety is present in a wide range of
natural products and pharmaceuticals, and 3-acylindoles
are particularly useful intermediates for the preparation
of important therapeutic agents.9 Various methods have
therefore been used for their preparation. The majority
of these methods involve acylation of preformed indole
(6) Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270.
(7) For examples of oxypalladation with external nucleophiles, see:
(a) Zhou, P.; Jiang, H.; Huang, L.; Li, X. Chem. Commun. 2011, 47, 1003.
(b) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059. (c) Okumoto,
H.; Nishihara, S.; Nakagawa, H.; Suzuki, A. Synlett 2000, 217.
(d) Kataoka, Y.; Matsumoto, O.; Ohashi, M.; Yamagata, T.; Tani, K.
Chem. Lett. 1994, 1283. (e) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845.
(8) For selected examples of nucleophilic addition to alkyne activated
by acyl or aryl Pd(II) species, see: (a) Lu, Z.; Cui, W.; Xia, S.; Bai, Y.;
Luo, F.; Zhu, G. J. Org. Chem. 2012, 77, 9871. (b) Arcadi, A.; Cacchi, S.;
Fabrizi, G.; Marinelli, F.; Parisi, L. M. Tetrahedron 2003, 59, 4661.
(c) Hu, Y.; Zhang, Y.; Yang, Z.; Fathi, R. J. Org. Chem. 2002, 67, 2365.
(d) Dai, G.; Larock, R. C. Org. Lett. 2002, 4, 193. (e) Dai, G.; Larock,
R. C. Org. Lett. 2001, 3, 4035. (f) Arcadi, A.; Cacchi, S.; Carnicelli, V.;
Marinelli, F. Tetrahedron 1994, 50, 437. (g) Arcadi, A.; Cacchi, S.;
Marinelli, F. Tetrahedron Lett. 1992, 33, 3915.
3-Acyl-2-arylindole is a useful intermediate for the
construction of polycyclic indole derivatives such as car-
bolines and carbazoles.12 We therefore used this reaction
(10) (a) Wu, C.-Y.; Hu, M.; Liu, Y.; Song, R.-J.; Lei, Y.; Tang, B.-X.;
Li, R.-J.; Li, J.-H. Chem. Commun. 2012, 48, 3197. (b) Ali, M. A.;
Punniyamurthy, T. Synlett 2011, 623. (c) Bernini, R.; Fabrizi, G.;
Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078.
(d) Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417. (e) Yin, Y.;
Ma, W.; Chai, Z.; Zhao, G. J. Org. Chem. 2007, 72, 5731. (f) Shimada,
T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546.
(g) Cacchi, S.; Fabrizi, G.; Parisi, L. M. Synthesis 2004, 1889.
(11) (a) Qiu, G.; Chen, C.; Yao, L.; Wu, J. Adv. Synth. Catal. 2013,
355, 1579. (b) Hu, Z.; Liang, D.; Zhao, J.; Huang, J.; Zhu, Q. Chem.
Commun. 2012, 48, 7371. (c) Kamijo, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2002, 124, 11940. (d) Ottoni, O.; Neder, A. de V. F.; Dias, A. K. B.;
Cruz, R. P. A.; Aquino, L. B. Org. Lett. 2001, 3, 1005. (e) Faul, M. M.;
Winneroski, L. L. Tetrahedron Lett. 1997, 38, 4749. (f) Bergman, J.;
Venemalm, L. Tetrahedron 1990, 46, 6061. (g) Ketcha, D. M.; Gribble,
G. W. J. Org. Chem. 1985, 50, 5451. (h) Eyley, S. C.; Giles, R. G.;
Heaney, H. Tetrahedron Lett. 1985, 26, 4649.
(9) (a) Wu, Y.-S.; Coumar, M. S.; Chang, J.-Y.; Sun, H.-Y.; Kuo,
F.-M.; Kuo, C.-C.; Chen, Y.-J.; Chang, C.-Y.; Hsiao, C.-L.; Liou, J.-P.;
Chen, C.-P.; Yao, H.-T.; Chiang, Y.-K.; Tan, U.-K.; Chen, C.-T.; Chu,
C.-Y.; Wu, S.-Y.; Yeh, T.-K.; Lin, C.-Y.; Hsieh, H.-P. J. Med. Chem.
2009, 52, 4941. (b) Barreca, M. L.; Ferro, S.; Rao, A.; De Luca, L.;
ꢂ
Zappala, M.; Monforte, A.-M.; Debyser, Z.; Witvrouw, M.; Chimirri,
A. J. Med. Chem. 2005, 48, 7084. (c) Pais, G. C. G.; Zhang, X.;
Marchand, C.; Neamati, N.; Cowansage, K.; Svarovskaia, E. S.; Pathak,
V. K.; Tang, Y.; Nicklaus, M.; Pommier, Y.; Burke, T. R. J. Med. Chem.
2002, 45, 3184.
B
Org. Lett., Vol. XX, No. XX, XXXX