Journal of the American Chemical Society
Communication
Chem. 1996, 61, 430. (e) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am.
Chem. Soc. 1997, 119, 1492. (f) Kawabata, T.; Nagato, M.; Takasu, K.;
Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169.
(2) (a) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584.
(b) Eames, J. Angew. Chem., Int. Ed. 2000, 39, 885. (c) Dehli, J. R.;
Gotor, V. Chem. Soc. Rev. 2002, 31, 365.
observed in these cases, which precludes the major
intermediacy of an epoxide as proposed in Ye’s work.5d
To elucidate the stereodifferentiation of the catalytic system,
the structure of the bisguanidinium salt was pursued.
Disappointingly, a series of attempts to get the crystal structure
of bisguanidinium hemisalt 4·HX failed. Instead, crystals of
4·2HBF417 were obtained from solutions of either 4·2HBF4 or
4·HBF4. It occurred to us that an equilibrium among 4, 4·HX,
and 4·2HX might exist. Therefore, comparison experiments
were performed to confirm this presumption. A 1:1 mixture of
(3) (a) Faber, K. Chem.Eur. J. 2001, 7, 5004. (b) Pellissier, H.
Tetrahedron 2011, 67, 3769.
(4) (a) Davis, F. A.; Jenkins, R. H., Jr.; Awad, S. B.; Stringer, O. D.;
Watson, W. H.; Galloy, J. J. Am. Chem. Soc. 1982, 104, 5412. (b) Davis,
F. A.; Thimma Reddy, R.; Weismiller, M. C. J. Am. Chem. Soc. 1989,
111, 5964. (c) Davis, F. A.; Thimma Reddy, R. J. Org. Chem. 1992, 57,
2599. (d) Davis, F. A.; Chen, B. C. Chem. Rev. 1992, 92, 919.
(e) Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2009, 131, 3864.
(5) (a) Michaelis, D. J.; Shaffer, C. J.; Yoon, T. P. J. Am. Chem. Soc.
2007, 129, 1866. (b) Benkovics, T.; Guzei, I. A.; Yoon, T. P. Angew.
Chem., Int. Ed. 2010, 49, 9153. (c) Williamson, K. S.; Yoon, T. P. J.
Am. Chem. Soc. 2012, 134, 12370. (d) Shao, P.-L.; Chen, X.-Y.; Ye, S.
Angew. Chem., Int. Ed. 2010, 49, 8412.
(6) (a) Lykke, L.; Rodríguez-Escrich, C.; Jørgensen, K. A. J. Am.
Chem. Soc. 2011, 133, 14932. (b) Olivares-Romero, J. L.; Li, Z.;
Yamamoto, H. J. Am. Chem. Soc. 2012, 134, 5440. (c) Uraguchi, D.;
Tsutsumi, R.; Ooi, T. J. Am. Chem. Soc. 2013, 135, 8161.
(7) For reviews, see: (a) Fisk, J. S.; Mosey, R. A.; Tepe, J. J. Chem.
Soc. Rev. 2007, 36, 1432. (b) Alba, A.-N. R.; Rios, R. Chem.Asian J.
2011, 6, 720.
4 and 4·2HBArF gave an outcome comparable to that for
4
4·HBArF . However, catalyst 4 resulted in a racemic product,
4
and its salt 4·2HBArF4 gave no reaction at all. This observation
provided a direct method to utilize bisguanidinium hemisalt
catalyst 4·HBArF . On the basis of the above results, we
4
considered the possibility that the chiral bisguanidinium
hemisalt serves as a bifunctional catalyst. The guanidine section
of the catalyst might activate the azlactone. On the other hand,
the guanidinium section in the catalyst could preferentially
recognize and activate the (S,S)-oxaziridine. The spatial
arrangement of 4·2HBF4 seemed to make a great deal of
difference in comparison with bisguanidine 4.13a The intra-
molecular hydrogen bonds between the amide and guanidine
moieties disappear after protonation of the guanidine. The
flexibility of the diamine backbone and the surrounding
counterion appear to create a chiral environment suitable for
the asymmetric reaction.
In conclusion, we have developed an efficient asymmetric
oxyamination of azlactones catalyzed by a chiral bisguanidinium
hemisalt that allows the generation of a variety of optically
active oxazolin-4-one derivatives with potential biological
activity. Furthermore, the reaction displays remarkable triple
stereodifferentiation and kinetic resolution. Chiral nonracemic
oxaziridines were readily recovered with good S factors.
Efficient asymmetric oxyaminations of 3-methylindole and
styrene were accomplished using the recovered chiral
oxaziridine. Further exploration of the use of this catalyst in
other reactions is underway.
(8) For a review, see: Rodriguez-Docampo, Z.; Connon, S. J.
ChemCatChem 2012, 4, 151.
(9) Rai, V. K.; Sharma, N.; Kumar, A. Synlett 2013, 97.
(10) (a) Macherla, V. R.; Liu, J.; Sunga, M.; White, D. J.; Grodberg,
J.; Teisan, S.; Lam, K. S.; Potts, B. C. M. J. Nat. Prod. 2007, 70, 1454.
(b) Maurer, G.; Kiechel, J. R. Ger. Offen. DE 2805977, 1978.
(11) Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper, D.
W. J. Am. Chem. Soc. 2003, 125, 6462.
(12) For reviews, see: (a) Coles, M. P. Chem. Commun. 2009, 3659.
(b) Leow, D.; Tan, C.-H. Chem.Asian J. 2009, 4, 488. (c) Terada, M.
J. Synth. Org. Chem., Jpn. 2010, 68, 1159. (d) Ishikawa, T. Chem.
Pharm. Bull. 2010, 58, 1555. (e) Leow, D.; Tan, C.-H. Synlett 2010,
1589. (f) Selig, P. Synthesis 2013, 703.
(13) (a) Dong, S. X.; Liu, X. H.; Chen, X. H.; Mei, F.; Zhang, Y. L.;
Gao, B.; Lin, L. L.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 10650.
(b) Dong, S. X.; Liu, X. H.; Zhang, Y. L.; Lin, L. L.; Feng, X. M. Org.
Lett. 2011, 13, 5060.
(14) (a) Tanaka, S.; Nagasawa, K. Synlett 2009, 667. (b) Uyeda, C.;
Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 9228. (c) Fu, X.; Loh, W.-
T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.-J.; Wang, J.-M.; Tan, C.-H.
Angew. Chem., Int. Ed. 2009, 48, 7387.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and analytical data. This material is
■
S
(15) For a review, see: (a) Krossing, I.; Raabe, I. Angew. Chem., Int.
Ed. 2004, 43, 2066. For selected examples using BArF − as the
4
AUTHOR INFORMATION
Corresponding Author
■
counterion, see: (b) Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou,
G.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 2780. (c) Ding, Z.-Y.;
Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012,
51, 5706.
Notes
(16) See the Supporting Information for details.
The authors declare no competing financial interest.
(17) CCDC 931982 (cis-3q) and CCDC 936308 (4·2HBF4) contain
the supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic Data
ACKNOWLEDGMENTS
■
We thank the National Basic Research Program of China (973
Program, 2010CB833300), the National Natural Science
Foundation of China (21021001, 21072133, and 21222206),
and the Ministry of Education (NCET-11-0345) for financial
support.
REFERENCES
■
(1) For reviews, see: (a) Kagan, H. B.; Fiaud, J. C. Top. Stereochem.
1988, 18, 249. (b) Muller, C. E.; Jure, M.; Schreiner, P. R. Angew.
Chem., Int. Ed. 2011, 50, 6012. (c) Pellissier, H. Adv. Synth. Catal.
2011, 353, 1613. For pioneering examples of nonenzymatic KR of
racemic alcohols, see: (d) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org.
̈
D
dx.doi.org/10.1021/ja404379n | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX