Enantioselective Mukaiyama–Michael Reaction of Silyl Enol Ethers to 2-Enoylpyridine N-Oxides
sell, S. Lee, D. W. C. MacMillan, Chem. Sci. 2010, 1,
Experimental Section
37–42; c) B. C. Hong, C. S. Hsu, G. H. Lee, Chem.
Commun. 2012, 48, 2385–2387; d) C. Grondal, M.
Jeanty, D. Enders, Nature Chem. 2010, 2, 167–178; e) T.
Ohshima, Y. Xu, R. Takita, S. Shimizu, D. Zhong, M.
Shibasaki, J. Am. Chem. Soc. 2002, 124, 14546–14547.
[3] For recent reviews on Michael addition, see: a) M. S.
Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550–
1573; Angew. Chem. Int. Ed. 2006, 45, 1520–1543; b) S.
Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem.
Rev. 2007, 107, 5471–5569; c) P. Melchiorre, M. Mari-
gao, A. Carlone, G. Bartoli, Angew. Chem. 2008, 120,
6232–6265; Angew. Chem. Int. Ed. 2008, 47, 6138–6173;
d) S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev. 2009,
38, 2178–2189; e) A. Alexakis, J. E. Backvall, N.
Krause, O. Paꢃmies, M. Dieꢁguez, Chem. Rev. 2008, 108,
2796–2823.
[4] Recent examples on catalytic asymmetric Michael reac-
tions to nitrostyrenes, see: a) K. Sakthivel, W. Notz, T.
Bui, C. F. Barbas III, J. Am. Chem. Soc. 2001, 123,
5260–5267; b) J. M. Betancort, C. F. Barbas III, Org.
Lett. 2001, 3, 3737; c) T. Ishii, S. Fujioka, Y. Sekiguchi,
H. Kotsuki, J. Am. Chem. Soc. 2004, 126, 9558–9559;
d) A. J. A. Cobb, D. A. Longbottom, D. M. Shaw, S. V.
Ley, Chem. Commun. 2004, 1808–1809; e) Y. Hayashi,
H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. 2005,
117, 4284–4287; Angew. Chem. Int. Ed. 2005, 44, 4212–
4215; f) B. Tan, X. Zeng, Y. Lu, P. J. Chua, G. Zhong,
Org. Lett. 2009, 11, 1927–1930.
Typical Procedure for Enantioselective Mukaiyama–
Michael Reaction
A solution of a ligand 1d (17 mg, 0.050 mmol) and CuACTHNUTRGNEUNG(OTf)2
(18 mg, 0.050 mmol) in dry dichloromethane (2.0 mL) was
stirred at room temperature for 1 h under a nitrogen atmos-
phere. To this solution, 2-enoylpyridine N-oxide 4a
(1.0 mmol) was added. The resulting mixture was stirred at
room temperature for 10 min and then cooled to À508C. To
this mixture, a solution of silyl enol ether 5a (2.0 mmol) in
0.5 mL dichloromethane was added slowly and then allowed
to stir at À508C until completion of the reaction (as judged
by TLC analysis). After completion of the reaction, TBAF
(1.0 mmol) was added slowly to the reaction mixture at the
same temperature and then the mixture was stirred for an-
other 30 min at the same temperature. The mixture was
then allowed to warm to room temperature. The solvent was
removed and the resulting mixture was purified by column
chromatography on silica gel using hexane:ethyl acetate
mixture as eluent to afford the pure product 6a as a solid;
yield: 93%; 96% ee; mp 102-1048C; [a]2D5: +49.2 (c 0.4,
CHCl3). The optical purity was determined by chiral HPLC
(Daicel Chiralpak OD-H column, hexane/i-PrOH=70:30,
flow rate 1.0 mLminÀ1, 254 nm): tR =20.29 min (R) and
1
22.96 min (S); H NMR (500 MHz; CDCl3): d=3.34 (dd, J=
6.6, 17.0 Hz. 1H), 3.40 (dd, J=6.6, 17.0 Hz, 1H), 3.62 (dd,
J=6.6, 10.5 Hz, 1H), 3.70 (dd, J=6.6, 10.5 Hz, 1H), 4.20 (t,
J=5.2 Hz, 1H), 7.10 (dd ~t, J=6.6, 10.5 Hz, 1H), 7.18 (dd ~
t, J=6.6, 10.5 Hz, 3H), 7.26 (dd, J=7.8, 5.2 Hz, 3H), 7.38 (t,
J=7.9 Hz, 4H), 7.50 (dd, J=6.6, 7.9 Hz, 1H), 7.88 (d, J=
7.9 Hz, 2H); 13C NMR (75 MHz; CDCl3): d=36.8, 44.9,
48.7, 126.5, 127.4, 128.4, 132.9, 136.7, 140.3, 143.5, 146.5,
146.9, 196.1, 198.1; IR (neat): u=3448.4, 2924.5, 1683.6,
1429.5, 1258.6, 1158.0, 1032.1, 995.5, 760.02 cmÀ1; HR-MS
(ESI): m/z=368.1259, calcd. for C22H19NO3Na: 368.1263.
Acknowledgements
[5] a) J. M. Betancort, K. Sakthivel, R. Thayumanavan, F.
Tanaka, C. F. Barbas III, Synthesis 2004, 1509–1521;
b) G. Zhao, J. Vesely, J. Sun, K. E. Christensen, C. Bon-
neau, A. Cꢄrdova, Adv. Synth. Catal. 2008, 350, 657–
661.
[6] Q. Zhu, Y. Lu, Org. Lett. 2008, 10, 4803.
[7] S. Sulzer-Mossꢅ, M. Tissot, A. Alexakis, Org. Lett.
2007, 9, 3749–3752.
[8] a) J. Franzen, M. Marigo, D. Fielenbach, T. C. Wabnitz,
A. Kjærsgaard, K. A. Jørgensen, J. Am. Chem. Soc.
2005, 127, 18296–18304; b) Y. Hayashi, H. Gotoh, T.
Tamura, H. Yamaguchi, R. Masui, M. Shoji, J. Am.
Chem. Soc. 2005, 127, 16028–16029; c) Y. Chi, S. H.
Gellman, Org. Lett. 2005, 7, 4253–4256.
J.G thanks the Council of Scientific and Industrial Research,
Government of India for the award of a fellowship.
[9] S. Zhu, Y. Wang, D. Ma, Adv. Synth. Catal. 2009, 351,
2563–2566.
[10] For examples on Mukaiyama-Michael reactions, see:
a) S. Kobayashi, S. Suda, M. Yamada, T. Mukaiyama,
Chem. Lett. 1994, 97–100; b) A. Bernardi, G. Colombo,
C. Scolastico, Tetrahedron Lett. 1996, 37, 8921–8924;
c) D. A. Evans, T. Rovis, M. C. Kozlowski, J. S. Tedrow,
J. Am. Chem. Soc. 1999, 121, 1994–1995; d) D. A.
Evans, M. C. Willis, J. N. Johnston, Org. Lett. 1999, 1,
865–868; e) D. A. Evans, J. S. Johnson, E. J. Olhava, J.
Am. Chem. Soc. 2000, 122, 1635–1649; f) D. A. Evans,
T. Rovis, M. C. Kozlowski, C. W. Downey, J. S. Tedrow,
J. Am. Chem. Soc. 2000, 122, 9134–9142; g) D. A.
Evans, K. A. Scheidt, J. N. Johnston, M. C. Willis, J.
Am. Chem. Soc. 2001, 123, 4480–4491; h) A. Bernardi,
K. Karamfilova, S. Sanguinetti, C. Scolastico, Tetrahe-
dron 1997, 53, 13009–13026; i) T. Ooi, K. Doda, K.
Maruoka, J. Am. Chem. Soc. 2003, 125, 9022–9023;
j) X. Xu, W. H. Hu, M. P. Doyle, Angew. Chem. 2011,
References
[1] For recent reviews, see: a) D. Enders, C. Grondal, M.
Hꢂttl, Angew. Chem. 2007, 119, 1590–1601; Angew.
Chem. Int. Ed. 2007, 46, 1570–1581; b) N. Krause, A.
Hoffmann-Roder, Synthesis 2001, 171; c) O. M. Berner,
L. Tedeschi, D. Enders, Eur. J. Org. Chem. 2002, 1877–
1894; d) M. P. Sibi, S. Manyem, Tetrahedron 2000, 56,
8033–8061; e) K. Tomioka, Y. Nagaoka, in: Comprehen-
sive Asymmetric Catalysis, (Eds.: E. N. Jacobsen, A.
Pfaltz, H. Yamamoto), Springer, Berlin, 1999; Vol. 3,
Chapter 31.1; f) P. Perlmutter, Conjugate Addition Re-
actions in Organic Synthesis, Pergamon, Oxford, 1992.
[2] a) E. M. Lopez, R. P. Herrera, M. Christmann, Nat.
Prod. Rep. 2010, 27, 1138–1167; b) M. Reiter, S. Tors-
Adv. Synth. Catal. 2013, 355, 383 – 388
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
387