Catalysis Science & Technology
Communication
Table 3 Rh/3 catalyzed hydroformylation of terminal olefinsa
In conclusion, a new series of spiroketal-based diphosphite
ligands have been synthesized and applied in the Rh-catalyzed
hydroformylation of unfunctionalized olefins. High catalytic
activity and good to excellent regioselectivity for the linear
aldehydes were obtained in the Rh-catalyzed hydroformylation
of terminal olefins. In the case of the isomerizing hydroformyl-
ation of internal olefins, the linear aldehydes were obtained
with a moderate linear regioselectivity. Further application of
the ligands for related catalytic reactions is underway.
We thank the financial support for this work from the
National Natural Science Foundation of China (grant no.
21172237, 21121062, 21032009), the Major Basic Research
Development Program of China (grant no. 2010CB833300),
the Chinese Academy of Sciences, and the Science and Tech-
nology Commission of Shanghai Municipality.
Entry Substrate
L
T (1C) l/bb Linearc (%) Iso.d (%) TONe
1 f
2 f
3g
4g
5
Propylene 3a 90
Propylene 3c 90
1-Butylene 3a 90
1-Butylene 3c 90
1-Hexene 3a 90
1-Hexene 3c 90
15
12
55
37
93
66
43
36
93.9
92.8
98.2
97.4
98.9
98.5
97.7
97.4
—
—
—
—
13
13
16
12
—
—
1.8 Â 104
1.6 Â 104
2.4 Â 104
2.3 Â 104
7.5 Â 103
8.4 Â 103
6.4 Â 103
7.8 Â 103
7.2 Â 103
6.0 Â 103
6
7
1-Octene
1-Octene
Styrene
Styrene
3a 90
3c 90
3a 100
3c 100
8
9h
10h
2.1 68.0
3.6 78.1
a
S/C = 10 000, Rh(acac)(CO)2 (0.001 mmol), Rh/ligand ratio = 1 : 3,
temperature = 90 1C, CO/H2 = 5/10 bar, 3 h, toluene (1.0 mL) as solvent,
b
c
decane as the internal standard. See Table 1. See Table 1.
d
g
e
f
See Table 1. See Table 1. S/C = 50 000, toluene (2.0 mL) as solvent.
S/C = 50 000. Rh/ligand ratio = 1 : 2, CO/H2 = 5/5 bar.
h
Notes and references
1 For reviews, see: (a) C. Claver and P. W. N. M. van Leeuwen,
Rhodium Catalyzed Hydroformylation, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2002; (b) B. Breit
and W. Seiche, Synthesis, 2001, 1, 1; (c) F. Ungvary, Coord.
Chem. Rev., 2005, 249, 2946; (d) R. Franke, D. Selent and
Table 4 Rh/3 catalyzed hydroformylation of internal olefinsa
Entry
Substrate
L
l/bb
Linearc (%)
TONd
¨
A. Borner, Chem. Rev., 2012, 112, 5675; (e) J. Pospech,
1
2
3
(Z)-2-Butylene
(Z)-2-Butylene
(E)-2-Butylene
(E)-2-Butylene
2-Octene
3a
3c
3a
3c
3a
3c
3.8
3.2
3.5
3.2
3.8
3.2
79.3
76.1
77.9
75.9
79.3
76.0
6.0 Â 103
5.5 Â 103
5.2 Â 103
4.7 Â 103
2.7 Â 103
2.9 Â 103
I. Fleischer, R. Franke, S. Buchholz and M. Beller, Angew.
Chem., Int. Ed., 2013, 52, 2852.
2 (a) T. J. Devon, G. W. Phillips, T. A. Puckette, J. L. Stavinoha and
J. J. Vanderbilt, US Patent 4694109, 1987; (b) W. A. Herrmann,
C. W. Kohlpaintner, E. Herdtweck and P. Kiprof, Inorg. Chem.,
1991, 30, 4271; (c) C. P. Casey, G. T. Whiteker, M. G. Melville,
L. M. Petrovich, J. A. Gavney Jr and D. R. Powell, J. Am. Chem.
Soc., 1992, 114, 5535; (d) C. P. Casey, E. L. Paulsen,
E. W. Beuttenmueller, B. R. Proft, L. M. Petrovich, B. A. Matter
and D. R. Powell, J. Am. Chem. Soc., 1997, 119, 11817.
4
5e
6e
2-Octene
a
S/C = 50 000, Rh(acac)(CO)2 (0.001 mmol), Rh/ligand ratio = 1 : 3,
temperature = 110 1C, CO/H2 = 5/10 bar, 15 h, toluene (1.0 mL) as
b
c
solvent, decane as the internal standard. See Table 1. See Table 1.
d
e
See Table 1. S/C = 10 000.
of 50 000. In the cases of the medium-chain olefins 1-hexene
and 1-octene, the regioselectivities towards the linear aldehyde
products were excellent (l/b = 36–93, entries 5–8), albeit accom-
panied by some amount of isomerization products. Remark-
ably, for the hydroformylation of styrene, an olefinic substrate
well-known to favor the branched aldehyde in most Rh-catalyzed
hydroformylation systems,7e both 3a and 3c afforded preferen-
tially the linear aldehyde, albeit with a moderate selectivity
(2.1–3.6, entries 9 and 10).
3 (a) M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer,
P. W. N. M. van Leeuwen, K. Goubitz and J. Fraanje,
Organometallics, 1995, 14, 3081; (b) L. A. Van der Veen,
M. D. K. Boele, F. R. Bregman, P. C. J. Kamer, P. W. N. M.
van Leeuwen, K. Goubitz, J. Fraanje, H. Schenk and C. Bo,
J. Am. Chem. Soc., 1998, 120, 11616; (c) L. A. van der Veen,
P. C. J. Kamer and P. W. N. M. van Leeuwen, Angew. Chem.,
Int. Ed., 1999, 38, 336; (d) L. A. van der Veen, P. C. J. Kamer
and P. W. N. M. van Leeuwen, Organometallics, 1999,
´
Under the optimized reaction conditions, the isomerization–
hydroformylation of some more challenging internal olefins
was also investigated using 3a/Rh or 3c/Rh as the catalyst. At a
S/C ratio of 50 000, the industrially important olefins (Z)- and
(E)-2-butylenes, both are major components of the so-called
Raffinate II from Crack-C4 products of naphtha steam cracking,1d
were transformed to the n-valeraldehyde and isovaleraldehyde
with similar l/b ratios (3.2–3.8, entries 1–4). The isomerization–
hydroformylation reactions involving the isomeric mixture
of longer chain substrate 2-octene (Z/E = 4/1) are somewhat
more sluggish, affording an overall similar regioselectivity
(l/b = 3.2 or 3.8, entries 5 and 6, Table 4) with a lower
TON value.
18, 4765; (e) J. J. Carbo, F. Maseras, C. Bo and P. W. N. M.
van Leeuwen, J. Am. Chem. Soc., 2001, 123, 7630; ( f ) P. C. J.
Kamer, P. W. N. M. van Leeuwen and J. N. H. Reek, Acc.
Chem. Res., 2001, 34, 895.
4 (a) E. Billig, A. G. Abatjoglou and D. R. Bryant, European
Patent EP 213639, 1987; (b) G. D. Cunny and S. L. Buchwald,
J. Am. Chem. Soc., 1993, 115, 2066.
5 (a) W. A. Herrmann, R. Schmid, C. W. Kohlpaintner and
T. Priermeier, Organometallics, 1995, 14, 1961; (b) H. Klein,
R. Jackstell, K.-D. Wiese, C. Borgmann and M. Beller, Angew.
Chem., Int. Ed., 2001, 40, 3408.
¨
6 R. Paciello, L. Siggel and M. Roer, Angew. Chem., Int. Ed.,
1999, 38, 1920.
c
This journal is The Royal Society of Chemistry 2013
Catal. Sci. Technol., 2013, 3, 1901--1904 1903