ChemComm
Communication
Notes and references
1 J. Alvarez-Builla, J. J. Vaquero and J. Barluenga, Modern
Heterocyclic Chemistry, Wiley-VCH, Weinheim, 2011.
2 Select reviews on the preparation of indoles: (a) S. Cacchi, G. Fabrizi
and A. Goggiamani, Org. React., 2012, 76, 281; (b) S. Cacchi,
G. Fabrizi and A. Goggiamani, Org. Biomol. Chem., 2011, 9, 641;
(c) K. Kru¨ger, A. Tillack and M. Beller, Adv. Synth. Catal., 2008,
350, 2153; (d) L. Ackermann, Synlett, 2007, 507; (e) D. A. Horton,
G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103, 893 and
references cited therein.
3 Selected reviews on C–H functionalizations: (a) N. Kuhl, M. N.
Hopkinson, J. Wencel-Delord and F. Glorius, Angew. Chem., Int. Ed.,
2012, 51, 10236; (b) J. Yamaguchi, A. D. Yamaguchi and K. Itami,
Angew. Chem., Int. Ed., 2012, 51, 8960; (c) K. M. Engle, T.-S. Mei,
M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788; (d) L. McMurray,
F. O’Hara and M. J. Gaunt, Chem. Soc. Rev., 2011, 40, 1885;
Scheme 6 Intermolecular competition experiments.
¨
(e) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc.
Rev., 2011, 40, 4740; ( f ) L. Ackermann, Chem. Rev., 2011, 111, 1315;
(g) M. Livendahl and A. M. Echavarren, Isr. J. Chem., 2010, 50, 630;
(h) P. Thansandote and M. Lautens, Chem.–Eur. J., 2009, 15, 5874.
4 [Rh]: (a) H. Wang, C. Grohmann, C. Nimphius and F. Glorius, J. Am.
Chem. Soc., 2012, 134, 19592; (b) M. P. Huestis, L. N. Chan,
D. R. Stuart and K. Fagnou, Angew. Chem., Int. Ed., 2011, 50, 1338;
(c) J. Chen, G. Song, C.-L. Pan and X. Li, Org. Lett., 2010, 12, 5426;
(d) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess and
K. Fagnou, J. Am. Chem. Soc., 2008, 130, 16474; (e) D. R. Stuart,
P. Alsabeh, M. Kuhn and K. Fagnou, J. Am. Chem. Soc., 2010,
132, 18326. Activated alkynes: ( f ) R. Bernini, G. Fabrizi,
A. Sferrazza and S. Cacchi, Angew. Chem., Int. Ed., 2009, 48, 8078.
[Pd]: (g) Z. Shi, C. Zhang, S. Li, D. Pan, S. Ding, Y. Cui and N. Jiao,
Angew. Chem., Int. Ed., 2009, 48, 4572; (h) S. Wu¨rtz, S. Rakshit,
J. J. Neumann, T. Droge and F. Glorius, Angew. Chem., Int. Ed., 2008,
47, 7230. [Ru]: (i) L. Ackermann and A. V. Lygin, Org. Lett., 2012,
14, 764 and references cited therein.
Scheme 7 Alkyne annulation with labeled arene [D]5-1b.
findings are in good agreement with a rate-determining migratory
alkyne insertion.
5 Recent reviews: (a) L. Ackermann, Acc. Chem. Res., 2013, 46, DOI:
10.1021/ar3002798; (b) G. Song, F. Wang and X. Li, Chem. Soc. Rev.,
2012, 41, 3651; (c) T. Satoh and M. Miura, Chem.–Eur. J., 2010,
16, 11212.
6 Reviews on the use of inexpensive first-row transition metal catalysts
for C–H functionalization: (a) N. Yoshikai, Synlett, 2011, 1047;
(b) Y. Nakao, Chem. Rec., 2011, 11, 242; (c) E. Nakamura and
N. Yoshikai, J. Org. Chem., 2010, 75, 6061; (d) A. Kulkarni and
O. Daugulis, Synthesis, 2009, 4087.
7 Nickel-catalyzed C–H functionalizations: (a) Y. Aihara and
N. Chatani, J. Am. Chem. Soc., 2013, 135, 5308; (b) K. Muto,
J. Yamaguchi and K. Itami, J. Am. Chem. Soc., 2012, 134, 169;
(c) R. Tamura, Y. Yamada, Y. Nakao and T. Hiyama, Angew. Chem.,
Int. Ed., 2012, 51, 5679; (d) T. Yao, K. Hirano, T. Satoh and M. Miura,
Angew. Chem., Int. Ed., 2012, 51, 775; (e) L. Ackermann, B. Punji and
W. Song, Adv. Synth. Catal., 2011, 353, 3325; ( f ) O. Vechorkin,
V. Proust and X. Hu, Angew. Chem., Int. Ed., 2010, 49, 3061;
(g) H. Hachiya, K. Hirano, T. Satoh and M. Miura, Angew. Chem.,
Int. Ed., 2010, 49, 2202; (h) H. Hachiya, K. Hirano, T. Satoh and
M. Miura, Org. Lett., 2009, 11, 1737; (i) J. Canivet, J. Yamaguchi,
I. Ban and K. Itami, Org. Lett., 2009, 11, 1733.
Furthermore, we performed oxidative annulations with iso-
topically labeled substrate [D]5-1b (Scheme 7), revealing a con-
siderable H/D exchange. Notably, scrambling with the free N–H
functionality exclusively occurred at the ortho-positions of the
arene. These results, thus, provide strong support for an initial
reversible C–H/N–H bond activation event to be operative.
Based on our mechanistic studies we consequently propose
the catalytic cycle to involve an initial reversible C–H/N–H bond
activation of aniline 1. Subsequent migratory insertion and
reductive elimination furnish the desired indole 3 and regenerate
the catalytically active nickel complex.
In summary, we have reported an unprecedented nickel-
catalyzed oxidative alkyne annulation by electron-rich anilines
with removable directing groups. The C–H/N–H bond function-
alizations proceeded with excellent chemo-, regio- and site-
selectivities in the absence of metal salts as oxidants, thereby
furnishing substituted indoles with a broad scope. Experimental
mechanistic studies provided support for reversible C–H/N–H
bond activation, and are suggestive of a rate-limiting migratory
alkyne insertion.
8 H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto and N. Chatani, J. Am.
Chem. Soc., 2011, 133, 14952.
9 Careful analysis of the reaction mixtures revealed the alkyne to serve
as the formal hydrogen acceptor.
10 The oxidative annulation of 1-phenylpropyne by substrate 1a gave a
low conversion of 25% as judged by GC analysis.
Support by the European Research Council under the European 11 (a) D. Balcells, E. Clot and O. Eisenstein, Chem. Rev., 2010, 110, 749;
(b) E. Clot, C. Megret, O. Eisenstein and R. N. Perutz, J. Am. Chem.
Soc., 2009, 131, 7817.
12 Catalytic annulations of 1-octyne or a TMS-substituted internal
Community’s Seventh Framework Program (FP7 2007–2013)/ERC
Grant agreement no. 307535 and the Chinese Scholarship Council
alkyne were thus far unsuccessful.
(fellowship to W.S.) is gratefully acknowledged.
c
6640 Chem. Commun., 2013, 49, 6638--6640
This journal is The Royal Society of Chemistry 2013