4
Tetrahedron
even in the case of a N-Boc protected vinyl chloride.
Analogously, the methyl group of the tosyl derivative 3k
remained unaffected after the calcium hypobromite
treatment.
Acknowledgements. The University of Vienna is gratefully
thanked for generous financial support. One of the authors
(L. C.) thanks the Austrian Ministry of Education for a
postgraduate Ernst Mach grant. Financial support from
Project CTQ2012-32042, from the Spanish Ministry of
Science and Innovation and Spanish Ministry of Economic
Affairs and Competitiveness is gratefully acknowledged.
Ca(BrO)2 (2.0 equiv.)
R
N
Br
R
N
O
Br
Ar
Ar
MeCN - AcOH (5:2 v/v)
2O, 0 °C, 1h
H
2b-l
3b-l
References.
1.
Ac
N
O
Ac
N
O
Ac
O
Br
Br
N
Br
De Kimpe, N.; Verhé, R. In The Chemistry of α-
3b (90%)
3c (86%)
3d (92%)
Haloketones, α-Haloaldehydes and α-Haloimines;
Patai, S. Ed.; Wiley: Chichester, 1988; pp. 1-119.
Suffert, J. Science of Synthesis 2005, 26, 877-904.
Pace, V.; Castoldi, L.; Pregnolato, M. Mini-Rev.
Med. Chem. 2013, in press, Ref. BSP-MRMC-2012-
38.
Reeder, M. R.; Anderson, R. M. Chem. Rev. 2006,
106, 2828-2842.
Izawa, K.; Onishi, T. Chem. Rev. 2006, 106, 2811-
2827.
Arndt, F.; Eistert, B. Ber. Dtsch. Chem. Ges. 1935,
68, 200-208.
Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94,
1091-1160.
Maas, G. Angew. Chem. Int. Ed. 2009, 48, 8186-
8195.
Pace, V.; Verniest, G.; Sinisterra, J. V.; Alcántara, A.
R.; De Kimpe, N. J. Org. Chem. 2010, 75, 5760-
5763.
Ac
N
O
Ac
O
Moc O
Ac
N
O
2.
3.
Br
F
NC
N
Br
N
Br
Br
O2
N
3e (96%)
3f (91%)
3g (82%)
3h (95%)
Boc
O
Boc
O
Ts
O
4-Ns
N
O
N
Br
N
Br
N
Br
Br
4.
5.
6.
7.
8.
9.
3i (92%)
3j (86%)
3k (93%)
3l (90%)
Scheme 4. Scope of the reaction: synthesis of variously functionalized
α-arylamino-α’-bromoacetones.
To demonstrate the synthetic versatility of the prepared α-
bromoketones, we reacted tosyl derivative 3k with PPh3,
followed by basic aqueous treatment to afford the
phosphorane
phosphorous ylide was employed in a Wittig reaction29
carried out in the biosolvent 2-MeTHF30,31
with
4
in high yield. Subsequently, this
10.
11.
Rotella, D. P. Tetrahedron Lett. 1995, 36, 5453-5456.
Baktharaman, S.; Hili, R.; Yudin, A. K. Aldrichim.
Acta 2008, 41, 109-119.
benzaldehyde to provide the interesting α,β-unsaturated-α’-
anilinoketone 5. (Scheme 5)
12.
13.
14.
Concellón, J. M.; Rodríguez-Solla, H. Curr. Org.
Chem. 2008, 12, 524-543.
Myers, A. G.; Barbay, J. K. Org. Lett. 2001, 3, 425-
428.
Pace, V.; Holzer, W. Tetrahedron Lett. 2012, 53,
5106-5109.
Scheme 5. Synthetic versatility of an α-arylamino-α’-bromoacetones in
a Wittig homologation.
15.
16.
Pace, V. Synlett 2010, 2825-2826.
Pace, V.; Martínez, F.; Fernández, M.; Sinisterra, J.
V.; Alcántara, A. R. Adv. Synth. Cat. 2009, 351,
3199-3206.
To conclude, we showed that easily prepared N-(2-
bromoallyl)-N-EWGs substituted anilines represent
excellent starting materials for the chemoselective synthesis
17.
Pace, V.; Cortés-Cabrera, Á.; Fernández, M.;
Sinisterra, J. V.; Alcántara, A. R. Synthesis 2010,
3545-3555.
of α-arylamino-α’-bromoacetones through
a
simple
oxidative hydrolysis of the bromovinyl moiety in the
presence of Ca(BrO)2 under mildly acidic conditions.
Importantly, the combined use of vinyl bromides and
Ca(BrO)2 allows to overcome the multi-chlorinations
experimentally observed in analogous processes involving
vinyl chlorides and a chloronium source. The high reactivity
of a α-bromoketone has been successfully exploited in a
Wittig homologation with an aromatic aldehyde to access a
functionalized α,β-unsaturated aminoketone.
18.
19.
20.
Pace, V.; Holzer, W.; Verniest, G.; Alcántara, A. R.;
De Kimpe, N. Adv. Synth. Catal. 2013, 355, 919-926.
Singh, G. S.; Mollet, K.; D’hooghe, M.; De Kimpe,
N. Chem. Rev. 2013, 113, 1441-1498.
Köbrich, G.; Akhtar, A.; Ansari, F.; Breckoff, W. E.;
Büttner, H.; Drischel, W.; Fischer, R. H.; Flory, K.;
Fröhlich, H.; Goyert, W.; Heinemann, H.; Hornke, I.;
Merkle, H. R.; Trapp, H.; Zündorf, W. Angew. Chem.
Int. Ed. 1967, 6, 41-52.
21.
22.
23.
24.
Pace, V.; Castoldi, L.; Holzer, W. Tetrahedron Lett.
2012, 53, 967-972.
Pace, V.; Martínez, F.; Fernández, M.; Sinisterra, J.
V.; Alcántara, A. R. Org. Lett. 2007, 9, 2661-2664.
Pace, V.; Sinisterra, J. V.; Alcántara, A. R. Curr.
Org. Chem. 2010, 14, 2384-2408.
Pace, V.; Hoyos, P.; Alcántara, A. R.; Holzer, W.
ChemSusChem 2013, 6, 905-910.
Vilaivan, T. Tetrahedron Lett. 2006, 47, 6739-6742.
VanBrunt, M. P.; Ambenge, R. O.; Weinreb, S. M. J.
Org. Chem. 2003, 68, 3323-3326.
Representative procedure.
To a solution of the vinyl bromide (1.0 equiv.) in
acetonitrile (10 mL) – acetic acid (4 mL) cooled at 0ºC was
added Ca(OBr)2 (0.33 M, 2.00 equiv.). The solution was
stirred for 1 h at 0ºC and, after the completion indicated by
TLC it was poured into a saturated solution of NaHCO3 and
extracted with dichlorometane (20 mL x 3). The combined
organic phases were dried with anhydrous MgSO4 and the
solvent were removed in vacuo. Whenever necessary, the
crude mixtures were purified by LC to obtain analytical
pure sample of bromoketones.
25.
26.
27.
Leanna, M. R.; Morton, H. E. Tetrahedron Lett.
1993, 34, 4485-4488.