10.1002/cssc.201802416
ChemSusChem
COMMUNICATION
[10] For recent reviews: a) N. Gorgas, K. Kirchner, Acc. Chem. Res. 2018,
51, 1558-1569; b) G. A. Filonenko, R. van Putten, E. J. M. Hensen, E.
A. Pidko, Chem. Soc. Rev. 2018, 47, 1459-1483; c) F. Kallmeier, R.
Kempe, Angew.Chem. Int. Ed. 2018, 57, 46-60; d) T. Zell, R. Langer,
ChemCatChem 2018, 10, 1930-1940; e) B. Maji, M. K. Barman,
Synthesis 2017, 49, 3377-3393; f) M. Garbe, K. Junge, M. Beller, Eur. J.
Org. Chem. 2017, 4344-4362; g) W. Liu, L. Ackermann, ACS Catal.
2016, 6, 3743-3752.
Acknowledgements
J.C.B. is thankful for financial support of the German Federal
Environmental Foundation (DBU). L.M.A. and L.C. acknowledge
King Abdullah University of Science and Technology (KAUST)
for support. We thank KAUST Supercomputing Laboratory for
using the supercomputer Shaheen II and providing the
computational resources.
[11] Selected examples: a) A. Mukherjee, A. Nerush, G. Leitus, L. J. W.
Shimon, Y. Ben-David, N. A. Espinosa Jalapa, D. Milstein, J. Am.
Chem. Soc. 2016, 138, 4298-4301; b) S. Elangovan, C. Topf, S.
Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge,
M. Beller, J. Am. Chem. Soc. 2016, 138, 8809-8814; c) S. Elangovan, J.
Neumann, J.-B. Sortais, K. Junge, C. Darcel, M. Beller, Nat. Commun.
2016, 7, 12641; d) M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K.
Kirchner, J. Am. Chem. Soc. 2016, 138, 15543-15546; e) N. Deibl, R.
Kempe, Angew. Chem., Int. Ed. 2017, 56, 1663-1666; f) P. Daw, A.
Kumar, N. A. Espinosa-Jalapa, Y. Diskin-Posner, Y. Ben-David, D.
Milstein. ACS Catal. 2018, 8, 7734-7731; g) K. Das, A. Mondal, D.
Srimani, J. Org. Chem., 2018, 83, 9553-9560; h) K. Das, A. Mondal, D.
Srimani, Chem. Commun. 2018, DOI: 10.1039/C8CC05877F.
Keywords:
Acceptorless
Dehydrogenation,
Hydrogen
Autotransfer, Base Metals, Alcohols, Heterocycles
[1]
[2]
a) L. Levi, T. J. J. Müller, Chem. Soc. Rev. 2016, 45, 2825-2846; b) B. H.
Rotstein, S. Zaretsky, V. Rai, A. K. Yudin, Chem. Rev. 2014, 114, 8323-
8359; c) A. Dömling, W. Wang, K. Wang, Chem. Rev. 2012, 112, 3083-
3135; d) J. E. Biggs-Houck, A. Younai, J. T. Shaw, Curr. Opin. Chem
Biol. 2010, 14, 371-382; e) B.B. Touré, D.G. Hall, Chem. Rev. 2009,
109, 4439-4486; f) J. D. Sunderhaus, S. F. Martin, Chem. Eur. J. 2009,
15, 1300-1308.
Heterocyclic Chemistry, 5th ed. (Eds.: J. A. Joule, K. Mills) Wiley, UK,
2010; b) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson,
Chem. Rev. 2010, 110, 6595-6663; c) V. Estévez, M. Villacampa, J. C.
Menéndez Chem. Soc. Rev. 2014, 43, 4633-4657; d) G. Chelucci,
Coord. Chem. Rev. 2017, 331, 37-53.
[12] Examples from our group: a) A. Brzozowska, L. M. Azofra, V. Zubar, I.
Atodiresei, L. Cavallo, M. Rueping, O. El-Sepelgy, ACS Catal., 2018, 8,
4103-4109; b) V. Zubar; Y. Lebedev; L. M. Azofra, L. Cavallo, O.
El-Sepelgy; M. Rueping, Angew. Chem. Int. Ed. 2018, 57, 13439-
13443; c) C. Wang, B. Maity, L. Cavallo, M. Rueping, Org. Lett. 2018,
20, 3105-3108; d) C. Wang, M. Rueping, ChemCatChem 2018, 10,
2681-2685; e) C. Wang, A. Wang, M. Rueping, Angew. Chem. Int. Ed.
2017, 56, 9935–9938, f) E. Matador, A. Brzozowska, O. El-Sepelgy, M.
Rueping, ChemSusChem 2018, 11, doi.org/10.1002/cssc.201801660
[13] For reviews, see: a) R. Khusnutdinova, D. Milstein, Angew. Chem. Int.
Ed. 2015, 54, 12236-12273; b) O. R. Luca, R. H. Crabtree, Chem. Soc.
Rev. 2013, 42, 1440-1459; c) V. Lyaskovskyy, B. de Bruin, ACS Catal.
2012, 2, 270-279.
[3]
[4]
T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 2010,
330, 1222-1227.
Selected Reviews: a) A. Corma, J. Navas, M. J. Sabater, Chem. Rev.
2018, 118, 1410-1459; b) A. Nandakumar, S. P. Midya, V. G. Landge,
E. Balaraman, Angew. Chem. Int. Ed. 2015, 54, 11022-11034; c) Y.
Obora, ACS Catal. 2014, 4, 3972-3981.
[5]
Selected Reviews: a) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-
9246; b) F. Huang, Z. Liu, Z. Yu, Angew. Chem. Int. Ed. 2016, 55, 862-
875; c) Q. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev. 2015, 44, 2305-
2329; d) C. Gunanathan, D. Milstein, Science 2013, 341, 249; e) J.
Choi, A. H. R. MacArthur, M. Brookhart, A. S. Goldman, Chem. Rev.
2011, 111, 1761-1779; f) G. Guillena, D. J. Ramón, M. Yus, Chem.
Rev. 2010, 110, 1611-1641.
[14] a) O. El-Sepelgy, N. Alandini, M. Rueping, Angew. Chem. Int. Ed. 2016,
55, 13602-13605; b) O. El-Sepelgy, A. Brzozowska, M. Rueping,
ChemSusChem 2017, 10, 1664-1668; c) O. El-Sepelgy, A. Brzozowska,
L. M. Azofra, Y. K. Jang, L. Cavallo, M. Rueping, Angew. Chem. Int. Ed.
2017, 56, 14863-14867; d) O. El-Sepelgy, A. Brzozowska, J. Sklyaruk,
Y. K. Jang, V. Zubar, M. Rueping, Org. Lett. 2018, 20, 696–699
[15] U. K. Das, Y. Ben-David, Y. Diskin Posner, D. Milstein, Angew. Chem.
Int. Ed. 2018, 57, 2179-2182.
[6]
[7]
a) T. Yan, K. Barta, ChemSusChem. 2016, 9, 2321-2325; for related
heterocycles see: b) K.-i. Fujita, T. Fujii, R. Yamaguchi, Org. Lett. 2004,
6, 3525-3528; c) M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C.
Maxwell, H. C. Maytum, A. J. A. Watson, J. M. J. Williams, J. Am.
Chem. Soc. 2009, 131, 1766-1774; d) T. Yan, B. L. Feringa, K. Barta,
Nat. Commun. 2014, 5, 5602.
[16] A. Hantzsch, Ber. Dtsch. Chem. Ges. 1890, 23, 1474-1476.
[17] P. Dydio, D. Lichosyt, J. Jurczak, Chem. Soc. Rev. 2011, 40, 2971-
2985.
a) N. D. Schley, G. E. Dobereiner, R. H. Crabtree, Organometallics
2011, 30, 4174-4179; b) S. Michlik, R. Kempe, Nat. Chem. 2013, 5,
140-144; c) D. Srimani, Y. Ben-David, D. Milstein, Angew. Chem. Int.
Ed. 2013, 52, 4012-4015; d) K. Lida, T. Miura, J. Anda, S. Saito, Org.
Lett. 2013, 15, 1436-1439; d) P. Daw, S. Chakraborty, J. A. Garg, Y.
Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2016, 55, 14373-14377;
g) F. Kallmeier, B. Dudziec, T. Irrgang, R. Kempe, Angew. Chem. Int.
Ed. 2017, 56, 7261-7265.
[18] Gas phase enthalpies of formation at room temperature can be found
at: a) NIST database: M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J.
KaboG. N. Roganov, Thermodynamics of Organic Compounds in the
Gas State, Thermodynamics Research Center, College Station, TX,
1994; b) J. P. Porterfield, J. H. Baraban, T. P. Troy, M. Ahmed, M. C.
McCarthy, K. M. Morgan, J. W. Daily, T. L. Nguyen, J. F. Stanton, G. B.
Ellison, J. Phys. Chem. A 2016, 120, 2161-2172.
[19] Optimized geometries were located using the PBE functional together
with the SVP basis set for main group atoms and the TZVP basis set
for Mn. Single-point energy refinement calculations were done at
M06/TZVP level. Solvent effects (1-butanol) were included via the PCM
model at both steps. All calculations have been performed through the
facilities provided by the Gaussian09 package. See the Supporting
Information for full computational details.
[8]
[9]
a) M. Zhang, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2013, 52,
597-601; b) M. Zhang, X. Fang, H. Neumann, M. Beller, J. Am. Chem.
Soc. 2013, 135, 11384-11388.
R. M Bullock, Catalysis without Precious Metals, 2010, Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany. (b) B. Plietker, Iron
Catalysis in Organic Chemistry: Reactions and applications, 2nd ed.,
Wiley-VCH, Weinheim, 2008.
[20] H. Li, M. B. Hall, ACS Catal. 2015, 5, 1895-1913.
.
This article is protected by copyright. All rights reserved.