858
A. YILDIRIM ET AL.
Table 2 Spectral data of newly prepared compounds
Compound
Spectral data
2a
IR, ν˜/cm−1: 3293 ( NHCO), 3053 (aromatic
C
H), 1659 (amide C O)
1H NMR (CDCl3), δ: 7.54 (s, 1H, NHC O), 7.52 (s, br, 2H, ArH), 7.38-7.37 (m, 2H, ArH),
7.34-7.30 (m, 2H, ArH), 7.28-7.24 (m, 2H, ArH), 7.10 (t, J = 7.2 Hz, 1H, ArH), 3.98 (s, 2H,
CH2SCH2CN2), 2.48 (t, J = 7.6 Hz, 2H, CH2SCH2CN2), 2.37 (t, J = 7.6 Hz, 2H,
CH2CONH), 1.72 (quin, J = 8.0 Hz, 4H, 2CH2), 1.53 (quin, J = 7.6 Hz, 2H, CH2),
1.35-1.20 (m, 10H, 5CH2)
2b
2c
2d
2e
IR, ν˜/cm−1: 3368 ( NHCO), 3088 (aromatic
C H), 1678 (amide C O)
1H NMR (CDCl3), δ: 8.44 (t, J = 2.4 Hz, 1H, ArH), 8.01-7.99 (m, 1H, ArH), 7.95-7.93 (m,
1H, ArH), 7.57 (s, 1H, NHC O), 7.49-7.37 (m, 1H, ArH), 7.28-7.24 (m, 4H, ArH), 4.00 (s,
2H, CH2SCH2CN2), 2.46 (quin, J = 8.4 Hz, 4H, 2CH2), 1.74 (quin, J = 7.6 Hz, 4H, 2CH2),
1.52 (quin, J = 7.6 Hz, 2H, CH2-), 1.35-1.16 (m, 10H, 5CH2)
IR, ν˜/cm−1: 3288 ( NHCO), 3055 (aromatic
C H), 1658 (amide C O)
1H NMR (CDCl3), δ: 7.57 (s, br, 1H, NHC O), 7.45-7.37(m, 3H, ArH), 7.27-7.23 (m, 3H,
ArH), 6.87-6.83 (m, 2H, ArH), 3.97 (s, 2H, CH2SCH2CN2), 3.78 (s, 3H, -OCH3), 2.48 (t, J
= 7.6 Hz, 2H, CH2SCH2CN2), 2.35 (t, J = 7.6 Hz, 2H, CH2CONH), 1.72 (quin, J =
8.0 Hz, 2H, CH2), 1.52 (quin, J = 7.6 Hz, 2H, CH2), 1.36-1.19 (m, 12H, 6CH2)
IR, ν˜/cm−1: 3305 ( NHCO), 3052 (aromatic
C H), 1660 (amide C O)
1H NMR (CDCl3), δ: 7.41 (s, br, 1H, NHC O), 7.39-7.37 (m, 2H, ArH), 7.27-7.24 (m, 4H,
ArH), 7.12 (d, J = 8.4 Hz, 2H, ArH), 3.97 (s, 2H, CH2SCH2CN2), 2.48 (t, J = 7.6 Hz, 2H,
CH2SCH2CN2), 2.35 (t, J = 7.6 Hz, 2H, CH2CONH), 2.31 (s, 3H, CH3), 1.72 (quin,
J = 8.0 Hz, 2H, CH2), 1.53 (quin, J = 7.6 Hz, 2H, CH2), 1.35-1.20 (m, 12H, 6CH2)
IR, ν˜/cm−1: 3291 ( NHCO), 3062 (aromatic
C H), 1641 (amide C O)
1H NMR (CDCl3), δ: 7.57 (s, br, 1H, NHC O), 7.37-7.32 (m, 4H, ArH), 7.30-7.23 (m, 5H,
ArH), 4.46 (d, J = 5.6 Hz, 2H, PhCH2NH-), 3.97 (s, 2H, CH2SCH2CN2), 2.49 (t, J =
7.6 Hz, 2H, CH2SCH2CN2), 2.22 (t, J = 7.6 Hz, 2H, CH2CONH), 1.65 (quin, J = 8.0 Hz,
2H, CH2), 1.53 (quin, J = 7.6 Hz, 2H, CH2), 1.30-1.19 (m, 12H, 6CH2)
obtained as a singlet at δ3.98 for the ( CH2SCH2-benzimidazole), as a triplet at δ2.48 for
the ( CH2SCH2-benzimidazole), and as a triplet at δ 2.37 for the (–CH2CONHAr) protons
respectively.
The corrosion inhibition capabilities of the prepared compounds tested in 1.5-M
H2SO4 acidic medium are given as percentage inhibition efficiencies, η. The observed
results for (2a–e) inhibitors are given in Table 3. Percentage inhibition efficiencies were
calculated using the following equation:
η = [(Wo − W)/Wo] × 100,
Table 3 Corrosion inhibition efficiencies (η) for varying concentrations of tested benzimidazoles in 1.5 M H2SO4
for 5 h at room temperature (23 ◦C)∗
˙
Inhibition efficiencies (η)
Benzimidazoles
25 ppm
50 ppm 100 ppm
150 ppm
2a
2b
2c
2d
2e
85
77
85
90
86
92
78
91
90
92
98
94
98
97
98
99
96
99
98
99
∗Duplicate experiments were performed in each case and the mean value of the weight loss is reported.