Journal of the American Chemical Society
Communication
(2) (a) Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R.
Chem. Soc. Rev. 2013, 42, 1728. (b) Aida, T.; Meijer, E. W.; Stupp, S. I.
Science 2012, 335, 813. (c) Ousaka, N.; Takeyama, Y.; Iida, H.;
Yashima, E. Nat. Chem. 2011, 3, 856. (d) Wang, Q.; Mynar, J. L.;
Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. Nature
2010, 463, 339.
(3) (a) Horne, W. S.; Gellman, S. H. Acc. Chem. Res. 2008, 41, 1399.
(b) Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, 41, 1366.
(c) Vasudev, P. G.; Chatterjee, S.; Shamala, N.; Balaram, P. Chem. Rev.
2011, 111, 657. (d) Martinek, T. A.; Fulop, F. Chem. Soc. Rev. 2012,
41, 687. (e) Pilsl, L. K. A.; Reiser, O. Amino Acids 2011, 41, 709.
(f) Tomasini, C.; Angelici, G.; Castellucci, N. Eur. J. Org. Chem. 2011,
2011, 3648. (g) Roy, A.; Prabhakaran, P.; Baruah, P. K.; Sanjayan, G. J.
Chem. Commun. 2011, 47, 11593.
(4) (a) Porter, E. A.; Wang, X. H.; Lee, S.; Weisblum, B.; Gellman, S.
H. Nature 2000, 404, 565. (b) Cheng, P.-N.; Liu, C.; Zhao, M.;
Eisenberg, D.; Nowick, J. S. Nat. Chem. 2012, 4, 927. (c) Scheck, R. A.;
Schepartz, A. Acc. Chem. Res. 2011, 44, 654. (d) Goodman, C. M.;
Choi, S.; Shandler, S.; DeGrado, W. F. Nat. Chem. Biol. 2007, 3, 252.
(5) (a) Johnson, L. M.; Mortenson, D. E.; Yun, H. G.; Horne, W. S.;
Ketas, T. J.; Lu, M.; Moore, J. P.; Gellman, S. H. J. Am. Chem. Soc.
the long-range inter-residual H-bonding, the chirality alteration
at this region caused dramatic fraying of the termini of 5,
resulting in the C-terminal amide to be exposed to
intermolecular H-bonding. Indeed, the intermolecular nature
of this amide NH is also clearly supported in the solution-state
as judged from solvent titration studies (SI, S53). It is
noteworthy that the robust six-membered H-bonding inter-
actions were seen intact in 5 (Figure 5). Thus, our studies on
chirality alteration clearly confirm the crucial role played by the
Pro residues in maintaining the zipper formation.
In conclusion, this article discloses a unique class of synthetic
zipper peptides derived from a blend of α/β-aliphatic/aromatic
heterogeneous backbones with different stoichiometric combi-
nations of amino acid residues.16 These synthetic zipper
peptides assume a firm, folded architecture17 stabilized by
complementary aromatic stacking interactions and atypically
large remote inter-residual H-bonding interaction.18 The
noncovalent forces that dictate the structural architecture
were explored in depth, leading to the conclusion that the
zipper structural architecture is governed by a collective co-
operative interplay of these noncovalent interactions. Residue
selection criteria exert influence over the structural assembly
phenomenon, wherein the aromatic stacking forces are
anticipated to become more pronounced with larger
proportions of aromatic residues, offering more strength to
the zipper motif. Structural assembly of the zipper motifs is also
greatly controlled by orientational effects of the amino acid
residues, signifying the role of the backbone chirality on the
conformational bias. The wealth of information accrued from
this study suggests that even larger, synthetic zipper peptide
analogues can also be envisioned. and efforts are in progress to
achieve this objective.
2012, 134, 7317. (b) Berlicki, Ł.; Pilsl, L.; Web
́ ́
er, E.; Mandity, I. M.;
Cabrele, C.; Martinek, T. A.; Fulop, F.; Reiser, O. Angew. Chem., Int.
̈
̈
Ed. 2012, 51, 2208. (c) Prabhakaran, P.; Kale, S. S.; Puranik, V. G.;
Rajamohanan, P. R.; Chetina, O.; Howard, J. A. K.; Hofmann, H.-J.;
Sanjayan, G. J. J. Am. Chem. Soc. 2008, 130, 17743. (d) Vijayadas, K.
N.; Davis, H. C.; Kotmale, A. S.; Gawade, R. L.; Puranik, V. G.;
Rajamohanan, P. R.; Sanjayan, G. J. Chem. Commun. 2012, 48, 9747.
(e) Priya, G.; Kotmale, A. S.; Gawade, R. L.; Mishra, D.; Pal, S.;
Puranik, V. G.; Rajamohanan, P. R.; Sanjayan, G. J. Chem. Commun.
2012, 48, 8922. (f) Thorat, V. H.; Ingole, T. S.; Vijayadas, K. N.; Nair,
R. V.; Kale, S. S.; Ramesh, V. V. E.; Davis, H. C.; Prabhakaran, P.;
Gonnade, R. G.; Gawade, R. L.; Puranik, V. G.; Rajamohanan, P. R.;
Sanjayan, G. J. Eur. J. Org. Chem. 2013, 3529 and refs cited therein.
(6) Ramachandran, G. N.; Kartha, G. Nature 1955, 176, 593.
(7) (a) Gong, B. Acc. Chem. Res. 2012, 45, 2077. (b) Hunter, C. A.;
Spitaleri, A.; Tomas, S. Chem. Commun. 2005, 3691. (c) Bruggemann,
̈
ASSOCIATED CONTENT
■
J.; Bitter, S.; Muller, S.; Muller, W. M.; Muller, U.; Maier, N. M.;
̈
̈
̈
S
* Supporting Information
Lindner, W.; Vogtle, F. Angew. Chem., Int. Ed. 2007, 46, 254.
̈
Experimental procedures for compounds 1−5; H, 13C, and
1
(8) (a) Klarner, F.-G.; Schrader, T. Acc. Chem. Res. 2012, 46, 967.
(b) Salonen, L. M.; Ellermann, M.; Diederich, F. Angew. Chem., Int. Ed.
2011, 50, 4808.
DEPT-135 NMR spectra; MALDI-TOF/TOF-mass spectra
and 2D spectra of compounds; details of NMR-based MD
studies; and crystal data of 1, 4, and 5 (CIF). This material is
(9) Kool, E. T. Chem. Rev. 1997, 97, 1473−1488.
(10) Delaurier
̀
e, L.; Dong, Z.; Laxmi-Reddy, K.; Godde, F.; Toulme,
́
J.-J.; Huc, I. Angew. Chem., Int. Ed. 2012, 51, 473.
(11) (a) Gan, Q.; Ferrand, Y.; Bao, C.; Kauffmann, B.; Grel
́
ard, A.;
AUTHOR INFORMATION
Jiang, H.; Huc, I. Science 2011, 331, 1172. (b) Prabhakaran, P.; Priya,
G.; Sanjayan, G. J. Angew. Chem., Int. Ed. 2012, 51, 4006.
(12) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science
1997, 277, 1793.
(13) Krylov, D.; Vinson, C. R. Leucine Zipper. In eLS [Encyclopedia
of Life Sciences]; John Wiley & Sons, Ltd.: New York, 2001.
(14) (a) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc.
1997, 119, 10587. (b) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am.
Chem. Soc. 1996, 118, 7529.
(15) Tatko, C. D.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 9372.
(16) The zipper architecture observed herein is markedly different
from the right-handed helical architecture formed of Ant and Pro
residues in 1:1 ratio (see ref 5c).
(17) Crystallographic data of 1, 4, and 5 have been deposited with
the Cambridge Crystallographic Data Centre: CCDC: 913431,
913432, and 913433 for 1, 4, and 5, respectively.
■
Corresponding Author
(P.R.R.)
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
■
Dedicated to Prof. K. N. Ganesh and Prof. R. A. Mashelkar on
the occasion of their 60th and 70th birthdays, respectively. R.V.,
S.K., S.R., and A.S.K. thank CSIR, New Delhi, for research
fellowships. This work was funded by NCL-IGIB-JRI.
REFERENCES
■
(18) For related systems featuring zipper architectures, see:
(a) Archer, E. A.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 5074.
(b) Zhao, X.; Jia, M.-X.; Jiang, X.-K.; Wu, L.-Z.; Li, Z.-T.; Chen, G.-J. J.
Org. Chem. 2003, 69, 270 and refs 4b and 7a..
(1) (a) Ayme, J.-F. O.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.;
Rissanen, K.; Schultz, D. Nat. Chem. 2012, 4, 15. (b) Avestro, A.-J.;
Belowich, M. E.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 5881.
(c) Ruangsupapichat, N.; Pollard, M. M.; Harutyunyan, S. R.; Feringa,
B. L. Nat. Chem. 2011, 3, 53. (d) Hasell, T.; Wu, X.; A., J. T.; Bacsa, J.;
Steiner, A.; Mitra, T.; Trewin, A.; Adams, D. J.; Cooper, A. I. Nat.
Chem. 2010, 2, 750.
D
dx.doi.org/10.1021/ja405455g | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX