Organometallics
Article
1
3
Hz, C-3′/5′), 129.2 (dm, J = 157.5 Hz, C-2′/6′), 135.7 (tm, J = ca.
3J = 5 Hz, 2′-/6′-CH3), 30.5 (qm, 1J = 126 Hz, 2 × 1-CH3), 33.8 (qm,
1J = 126 Hz, 2 × 3-CH3), 47.3 (unresolved, C-3), 48.6 (unresolved, C-
1), 114.9 (sharp d, 1J = 156 Hz, C-4′), 122.8 (dm, 1J = ca. 154 Hz, C-
7), 122.9 (dm, 1J = ca. 154 Hz, C-4), 125.1 (m, apparent J = 6 Hz, C-
3
6.2 Hz, C-4′), 135.9 (sharp t, J = 7 Hz, C-1′), 148.7 (unresolved, C-
9), 150.7 (unresolved, C-8), 161.6 (unresolved, C-2), assigned through
the 13C/1H coupling patterns and comparison with 9b; IR (KBr) ν
3020, 2962, 2923, 2861, 1512, 1483, 1457, 1360, 1109, 1025, 861, 793,
760, and 661 cm−1. Anal. Calcd for C21H24 (276.42): C, 91.25; H,
8.75. Found: C, 91.53; H, 8.66.
1
1
2′/6′), 125.7 (dd, J = 156 Hz, C-5), 126.0 (dd, J = 156 Hz, C-6),
1
126.3 (dm, J = 150 Hz, C-3′/5′), 142.5 (unresolved, C-2), 153.1
(unresolved, C-9), 154.2 (unresolved, C-8), 158.5 (unresolved, C-1′),
1
186.9 (t, J(13C,6Li) = 10.7 Hz, C-α).
2-(4′-Chlorobenzylidene)-1,1,3,3-tetramethylindane (9d).
See ref 13.
2-(2′-/6′-Dimethylbenzylidene)-1,1,3,3-tetramethylindane
2-(Benzylidene)-1,1,3,3-tetramethylindane (9f). For the sol-
vent and temperature dependencies of 1H and 13C NMR δ values, see
Tables S6 and S7 on pp S19−S20 in the Supporting Information of ref
6.
(15). See ref 13.
2-[2′-(Monodeuteriomethyl)-6′-methylbenzylidene]-1,1,3,3-
tetramethylindane (16). See ref 13.
2-[2′-(Lithiomethyl)-6′-methylbenzylidene)-1,1,3,3-tetrame-
thylindane (17). 17 was formed from 14 through trans-lithiation and
was stable in THF for up to three days at 25 °C. The temperature-
2-(4′-Methylphenyl)-2-(1,1,3,3-tetramethyl-2-indanylidene)-
acetic Acid (10). See ref 13.
1
independent 13C and H NMR nonequivalences of the two 3-CH3
2-(4′-Lithiomethylbenzylidene)-1,1,3,3-tetramethylindane
(11). The α-lithio-4′-methyl compound 8c vanished within one hour
at 53 °C in THF solution, forming the olefin 9c together with 11,
whose later deuteriolysis afforded the deuteriated olefin 9g. The
temperature-independent (Tables S24 and S25)13 NMR data of 11 are
characteristic of a p-substituted benzyllithium derivative in THF
groups (Tables S28 and S29)13 show that (half-)rotation about the C-
1
α/C-1′ bond is slow on our NMR time scales. H NMR (400 MHz,
THF, 25 °C) δ 1.32 (s, 3 H, 1 × 1-CH3; second 1-CH3 not detected),
1.42 and 1.46 (2 s, 2 × 3 H, 2 × 3-CH3), 1.93 (s, 3 H, 6′-CH3), (2′-
CH2Li not detected), 5.44 (d, 3J = 7.0 Hz, 1 H, 5′-H), 6.00 (s, 1 H, α-
15
1
1
inclusive of an enhanced J(13CH2) value (expected 134 Hz): H
3
H), 6.11 (d, 3J = 8.0 Hz, 1 H, 3′-H), 6.26 (t, J = 7.6 Hz, 1 H, 4′-H),
NMR (400 MHz, THF, 25 °C) δ 1.34 (s, 6 H, 2 × 1-CH3), 1.51 (s, 6
7.07 (m, 4 H, 4-/5-/6-/7-H), assigned through comparison of the
lithiation shifts Δδ (Table 1) with those of benzyllithium;16 13C NMR
(100.6 MHz, THF, 25 °C) δ 21.9 (6′-CH3), 29.7 and 30.1 (2 × 1-
CH3), 32.3 and 33.4 (2 × 3-CH3), 38.4 (2′-CH2Li), 47.6 (C-1), 47.9
(C-3), 106.5 (C-5′), 115.1 (C-3′), 121.3 (C-1′), 122.7 (C-7), 122.9
(C-4), 126.0 (C-α), 126.6 (C-5), 126.7 (C-6), 127.1 (C-4′), 133.8 (C-
6′), 150.1 (C-9), 153.1 (C-8), 156.0 (C-2′), 157.9 (C-2), assigned
through comparison with 11 and as above with Δδ of benzyllithium.15
2-[α-(1,1,3,3-Tetramethyl-2-indanylidene)benzyl]-
adamantan-2-ol (25). Prepared from 3 with adamantan-2-one in
3
H, 2 × 3-CH3), 6.06 (d, J = 8.5 Hz, 2 H, 3′-/5′-H), 6.13 (s, 1 H, α-
H), 6.53 (d, 3J = 8.5 Hz, 2 H, 2′-/6′-H); 13C NMR (100.6 MHz, THF,
25 °C) δ 29.8 (qq, 1J = 126 Hz, 2 × 1-CH3), 33.0 (qq, 1J = 126 Hz, 2
× 3-CH3), 41.2 (t, 1J = 136 Hz, 4′-CH2Li), 46.8 (m, C-1), 48.5 (m, C-
3), 113.8 (t, 3J = 7.5 Hz, C-1′), 115.7 (dq, J = 150 Hz, 3J = 7 Hz, C-
1
1
3′/5′), 122.8 (C-7), 122.9 (C-4), 126.4 (dt, J = 141 Hz, C-α), 126.8
(dm, 1J = 159 Hz, C-5), 127.2 (dm, 1J = 158 Hz, C-6), 131.2 (dt, 1J =
3
149 Hz, J = 6 Hz, C-2′/6′), 146.6 (m, C-2), 150.2 (m, C-9), 153.6
3
(m, C-8), 158.4 (t, J = 7.2 Hz, C-4′).
1
Et2O; mp 160.5−162 °C (pentane); H NMR (400 MHz, CDCl3, 25
2-(α-Chloro-2′/6′-dimethylbenzylidene)-1,1,3,3-tetramethy-
lindane (12). See ref 13.
°C) δ 0.98 (broadened s, 6 H, 2 × 1-CH3), 1.48 (d, 2J ≈ 12 Hz, 4 H, 1
× 4″-H, 1 × 8″-H, 1 × 9″-H, and 1 × 10″-H), 1.64 (broad t, 3J ≈ 3 Hz,
2 H, 2 enantiotopic 6″-H), 1.74 (m, 3J ≈ 3 Hz, 1 H, 5″-H), 1.76 (s, 6
H, 2 × 3-CH3), 1.78 (m, 3J ≈ 3 Hz, 1 H, 7″-H), 1.83 (broad d, 2J ≈ 12
Hz, 2 H, 1 × 8″-H and 1 × 10″-H), 2.30 (broad d upon broad m, 2J ≈
2-(2′-/6′-Dimethyl-α-trimethylstannylbenzylidene)-1,1,3,3-
tetramethylindane (13). This was prepared in analogy with 7a12
from 12 (100 mg, 0.308 mmol) with Me3SnLi (ca. 0.62 mmol) in
anhydrous THF (3.4 mL). Aqueous workup6 after 90 min at room
temperature gave a 68:32 mixture (129 mg) of 13 and its parent olefin
15. Analytically pure 13 (72 mg, 52%) had mp 104−105 °C (ethanol);
1H NMR (400 MHz, CDCl3) δ 0.03 (s, 9 H; 119Sn satellites, 2J = 50.9
Hz; SnMe3), 1.17 (s, 6 H, 2 × 1-CH3), 1.57 (s, 6 H, 2 × 3-CH3), 2.17
(s, 6 H, 2′-/6′-CH3), 6.97 (quasi-s, 3 H, 3′-/5′-H and 4′-H), 7.05 (dm,
3J = ca. 7 Hz, 1 H, 7-H), 7.17−7.23 (m, 3 H, 4-/5-/6-H), assigned
through comparisons with 7b and with compound 21 of ref 20; 13C
3
12 Hz, 4 H, 1 × 4″-H and 1 × 9″-H upon 1″-/3″-H), 6.98 (dm, J =
7.5 Hz, 1 H, 7-H), 7.13 (dm, 3J = 7.5 Hz, 1 H, 4-H), 7.16 (td, 3J = 7.2
Hz, 1 H, 6-H), 7.21 (td, 3J = 7.2 Hz, 1 H, 5-H), 7.24 (partially hidden
t, 3′-/5′-H), 7.25 (hidden, 4′-H), 7.35 (dm, 2 H, 2′-/6′-H), assigned
through SCS,20 comparison with 2-tert-butyladamantan-2-ol,33 and the
NOESY correlations 2′-/6′-H ↔ 3′-/5′-H ↔ 1-CH3 (w, no cross-
peaks with adamantyl signals), 6-H ↔ 7-H ↔ 1-CH3 ↔ 2′-/6′-H ↔
8″-/10″-H (at δ = 1.83) ↔ 8″-/10″-H (at δ = 1.48), and 5-H ↔ 4-H
↔ 3-CH3 ↔ 1″-/3″-H ↔ 4″-/9″-/8″-/10″-H (at δ = 1.48) ↔ (5″-/
1
NMR (100.6 MHz, CDCl3) δ −3.78 (sharp q, J = 129 Hz, SnMe3),
21.3 (q, 1J = 126 Hz, 2′-/6′-CH3), 29.3 (qq, 1J = 127 Hz, 3J = 4.6 Hz, 2
1
1
3
7″-H) ↔ 6″-H; H NMR (400 MHz, CDCl3, −63 °C) δ = 0.50
× 1-CH3), 31.8 (q, J = 127 Hz, J = 4.6 Hz, 2 × 3-CH3), 49.2
(unresolved, C-3), 50.3 (unresolved, C-1), 122.1 (dm, 1J = 156 Hz, C-
7), 122.3 (dm, 1J = 156 Hz, C-4), 125.0 (sharp d, 1J = 158.7 Hz, C-4′),
126.8 (dd, 1J = 159 Hz, 3J = 7.5 Hz, C-5), 127.0 (dm, 1J = 159 Hz, C-
6), 127.1 (dm, 1J = 158 Hz, C-3′/-5′), 134.1 (m, C-2′/6′), 137.7 (s, C-
α), 144.3 (m, C-1′), 149.6 (m, C-9), 150.3 (m, C-8), 165.0 (m, C-2),
assigned as above; IR (KBr) ν 2987, 2958, 2921, 1602, 1486, 1460,
1361, 1027, 761 (s), and 521 cm−1. Anal. Calcd for C25H34Sn
(453.25): C, 66.25; H, 7.56. Found: C, 66.44; H, 7.44.
(broadened s, 3 H, 1 × 1-CH3), 1.42 (s, 3 H, 1 × 3-CH3), 1.60 (s, 3 H,
1 × 1-CH3), 1.62 (not resolved, 2 H, 2 × 6″-H), 1.76 (1 H, 5″-H),
1.80 (1 H, 7″-H), 1.96 (s, 3 H, 1 × 3-CH3), 3.33 (s, 1 H, OH), 7.05 (1
H, 7-H), 7.44 (very broad, 1 × 2′-/6′-H); 13C NMR (100.6 MHz,
CDCl3, 25 °C) δ 26.1 (dm, 1J = 132 Hz, C-5″), 26.7 (dm, 1J = 132 Hz,
1
3
C-7″), 31.3 (sharp qq, J = 127 Hz, J = 4.5 Hz, 2 × 3-CH3), 32.7
1
1
(broad q, J = 127 Hz, 2 × 1-CH3), 33.4 (t, J = 128 Hz, C-4″/-9″),
35.3 (t, 1J = 128 Hz, C-8″/-10″), 36.2 (d, 1J = 132 Hz, C-1″/-3″), 37.4
1
2-(α-[6Li]Lithio-2′-/6′-dimethylbenzylidene)-1,1,3,3-tetrame-
thylindane (14). A dry NMR tube containing the α-SnMe3
compound 13 (50 mg, 0.11 mmol) in anhydrous THF (0.5 mL)
was cooled to −30 °C, treated with n-Bu6Li (0.12 mmol) in
cyclopentane (0.081 mL), and stored at −70 °C. 14 was totally
monomeric between at least −95 and +25 °C (Tables S26 and S27)13
but suffered rapid trans-lithiation (within 20 min at 25 °C) to give the
benzyllithium derivative 17 along with the parent olefin 15. The final
addition of D2O and aqueous workup yielded 15 containing some 16
(total 31 mg, 97%). 1H NMR of 14 (400 MHz, THF, −95 °C) δ 1.11
(s, 6 H, 2 × 1-CH3), 1.37 (s, 6 H, 2 × 3-CH3), 2.04 (s, 6 H, 2′-/6′-
CH3), 6.19 (t, 3J = 7.3 Hz, 1 H, 4′-H), 6.56 (d, 3J = 7.3 Hz, 2 H, 3′-/
5′-H), 6.95 (m, 1 H, 7-H), 7.00 (m, 2 H, 5-/6-H), 7.09 (m, 1 H, 4-H);
13C NMR of 14 (100.6 MHz, THF, −95 °C) δ 22.7 (qd, 1J = 124 Hz,
(t, J ≈ 130 Hz, C-6″), 48.1 (unresolved, C-3), 51.0 (m, C-1), 79.9
(broad, C-2″), 122.0 (dd, 1J = 156 Hz, 3J = 7.5 Hz, C-7), 122.2 (dd, 1J
3
1
3
= 157 Hz, J = 7.5 Hz, C-4), 125.8 (dd, J = 159 Hz, J ≈ 7.5 Hz, C-
1
3
1
3′/-5′), 126.4 (dt, J = 159.5 Hz, J = 7.5 Hz, C-4′), 126.6 (dd, J =
159.5 Hz, 3J = 7.5 Hz, C-5), 126.9 (dd, 1J = 159 Hz, 3J = 7.5 Hz, C-6),
132.3 (dt, 1J = 159 Hz, 3J = 6.5 Hz, C-2′/-6′), 140.7 (t, 3J ≈ 7 Hz, C-
1′), 145.1 (unresolved, C-α), 148.8 (broad, C-8), 151.6 (broad, C-9),
157.7 (unresolved, C-2), assigned through SCS,20 comparison with 2-
tert-butyladamantan-2-ol,33 and 13C/1H heterocorrelation (HSQC);
13C NMR (100.6 MHz, CDCl3, −63 °C) δ 25.5 (C-5″), 26.0 (C-7″),
30.0 (1 × 3-CH3), 30.2 (1 × 1-CH3), 31.3 (1 × 1-CH3), 32.2 (C-4″ or
C-9″), 33.5 (C-9″ or C-4″), 34.1 (C-8″ or C-10″), 34.4 (1 × 3-CH3),
34.8 (C-1″ or C-3″), 35.4 (C-10″ or C-8″), 36.5 (C-3″ or C-1″), 36.8
(C-6″), 47.8 (C-3), 50.8 (C-1), 79.7 (C-2″), 122.0 (C-7), 122.3 (C-4),
4080
dx.doi.org/10.1021/om4000852 | Organometallics 2013, 32, 4070−4081