B. Askevold et al. / Journal of Organometallic Chemistry 744 (2013) 35e40
39
3JCP ¼ 3.1 Hz, PCH2), 26.1 (AXX0A0, N ¼ j1JCP
þ
3JCPj ¼ 14.5 Hz,
CH(CH3)2), 44.9 (s, NCH3), 64.4 (s, NCH2). 31P {1H} NMR
2
CH(CH3)2), 27.7 (AXX0A0, N ¼ j1JCP
þ
3JCPj ¼ 13.8 Hz, CH(CH3)2),
(161.8 MHz):
d
¼ ꢁ47.6 (t, JPP ¼ 18.8 Hz, P(CH3)), 53.8 (d,
55.4 (s, NCH2). 31P {1H} NMR (161.8 MHz):
d
¼
56.5 (d,
2JPP ¼ 18.8 Hz, PiPr2), 19F NMR (376.2 MHz):
d
¼ ꢁ78.7 (s, SO3CF3).
2
2JPP ¼ 18.8 Hz, PiPr2), ꢁ45.5 (d, JPP ¼ 18.8 Hz, P(CH3)3), ꢁ143.0
1
(sp, JPF ¼ 712.0 Hz, PF6).
4.3.5. Chemical oxidation of 3PMe3 in THF
3PMe3 (5 mg, 8.7
mmol) is dissolved in THF (0.5 mL) in a J-Young
4.3.2. [Ir(SOMe2)(HPNPiPr)]BPh4 (1dmso
)
NMR tube and AgPF6 (2.2 mg, 8.7 mol) is added at room tem-
m
HN(CH2CH2PiPr2)2 (0.135 g; 0.443 mmol) in THF (5 mL) is added
to a mixture of [IrCl(dmso)2]2 (0.170 g; 0.221 mmol) and NaBPh4
(0.152 g; 0.443 mmol) in THF (5 mL). The solution is stirred for 1 h at
room temperature and filtered. The yellow, microcrystalline prod-
uct is precipitated by addition of diethylether (10 mL) and pentanes
(5 mL), filtered off, and dried i. vac. Yield: 0.318 g (0.355 mmol, 80%).
Anal. Calcd. for C42H63BIrNOP2S (895.00): C, 56.36; H, 7.10; N, 1.57.
perature. Immediately, the orange solution turns dark red and a
black precipitate forms (Ag). The starting material is quantitatively
converted to a mixture of 1PMe3 (85%) and another compound (15%)
that was assigned to [Ir(PMe3)(N(CHCH2PiPr2)(CH2CH2PiPr2))]
(7PMe3), based on NMR data: (d8-THF, r.t., [ppm]) 1H NMR
(399.8 MHz):
d
¼ 3.77 (m, 2H, NCHCH2), 8.71 (d, 3JHH ¼ 24.1 Hz, 1H,
2
NCHCH2). 31P{1H} NMR (161.8 MHz):
d
¼ ꢁ43.9 (t, JPP ¼ 19.8 Hz,
2
2
Found: C, 56.86; H, 6.99; N, 1.30. IR (Nujol, cmꢁ1
)
n
¼ 3181 (s, NeH).
P(CH3)), 59.0 (dd, JPP ¼ 19.8 Hz, JPP ¼ 288.3 Hz, PiPr2), 62.4 (dd,
NMR (d8-THF, r.t., [ppm]) 1H NMR (399.8 MHz):
d
¼
1.16
2JPP ¼ 18.8 Hz, JPP ¼ 295.2 Hz, PiPr2).
2
(A3MXX0M0A3 , N ¼ j JHP þ 5JHPj ¼ 14.0 Hz, 3JHH ¼ 7.2 Hz, 6H, CH3),
Upon using [FeCp2]PF6 (2.9 mg, 8.7 mmol) or CPh3PF6 (3.4 mg,
3
0
3
3
1.24 (A3MXX0M0A3 , N ¼ j JHP
þ
5JHPj ¼ 14.0 Hz, JHH ¼ 7.2 Hz, 6H,
8.7
mmol) as oxidants the same observations are made.
0
CH3), 1.31 (m, 12H, CH3), 1.46 (m, 2H, PCH2), 1.96 (m, 2H, PCH2), 2.15
(m, 2H, NCH2), 2.35 (m, 2H, CH(CH3)2), 2.45 (m, 2H, CH(CH3)2), 2.78
(m, 2H, NCH2), 3.36 (s, 6H, OS(CH3)2), 4.47 (br, 1H, NH), 6.72 (t,
4.4. Computational methods
3JHH ¼ 7.2 Hz, 4H, B(C6H5)4), 6.86 (t, JHH ¼ 7.2 Hz, 8H, B(C6H5)4),
DFT calculations on complex 3CO were performed with
GAUSSIAN03 RevC.02 using the B3LYP functional [21,22]. Geometry
optimizations were run without symmetry or internal coordinate
constraints using the Stuttgart-RSC-ECP and corresponding valence
3
7.28 (br, 8H, B(C6H5)4). 13C {1H} NMR (100.6 MHz):
d
¼ 17.1 (s, CH3),
17.9 (s, CH3), 19.3 (s, CH3), 19.6 (s, CH3), 23.6 (AXX0A0,
N ¼ j1JCP þ 3JCPj ¼ 13.0 Hz, PCH2), 24.4 (m, CH(CH3)2), 26.7 (AXX0A0,
N ¼ j1JCP
þ
3JCPj ¼ 14.5 Hz, CH(CH3)2), 53.3 (s, OS(CH3)2), 55.7 (br,
basis set for iridium and all-electron split valence triple-z basis set 6-
NCH2), 120.99 (s, B(C6H5)4), 124.8 (s, B(C6H5)4), 136.3 (s, B(C6H5)4),
311 þ G** for all other elements [23,24]. The optimized structure is in
good agreement with the experimental molecular structure from X-
ray diffraction and was verified as being a true minimum on the po-
tential surface by the absence of negative eigenvalues in the vibra-
tional frequency analysis. Orbitals were visualized with GaussView
via cube files generated from formatted checkpoint files [25].
164.3 (q, JCB ¼ 48.9 Hz, B(C6H5)4). 31P {1H} NMR (161.8 MHz):
1
d
¼ 58.13 (s, PiPr2). 11B {1H} NMR (128.3 MHz):
d
¼ ꢁ7.54 (s,
B(C6H5)4).
4.3.3. [Ir(PMe3)(PNPiPr)] (3PMe3
)
1PMe3 (0.200 g; 0.224 mmol) and KOtBu (0.025 g; 0.223 mmol)
were dissolved in THF (10 mL) and stirred for 10 min at room
temperature. The solvent is evaporated and the residue is extracted
with pentanes. After filtration, crystallization at ꢁ20 ꢀC gives 3PMe3
as orange crystals, which are filtered off and dried i. vac. Yield:
0.115 g (0.201 mmol, 90%). Anal. Calcd. for C19H45IrNP3 (572.71): C,
4.5. Single crystal X-ray structure determinations
Compound 1PMe3
: Crystal data: formula: C19H46F6IrNP4;
Mr ¼ 718.67; crystal color and shape: orange fragment, crystal di-
mensions: 0.46 ꢂ 0.51 ꢂ 0.51 mm; crystal system: monoclinic;
39.85; H, 7.92; N, 2.45. Found: C, 40.00; H, 8.46; N, 2.49. NMR (C06D6,
space group: C2/c (no. 15); a ¼ꢀ 14.7502(6), b ¼ 14.1777(4),
r.t., [ppm]) 1H NMR (399.8 MHz):
d
¼ 1.11 (A6M2XX0M2 A6 ,
c ¼ 27.5450(11) A,
b
¼ 99.002(3) ; V ¼ 5689.4(4) A ; Z ¼ 8;
3
0
ꢀ
ꢀ
3
N ¼ j3JHP
þ
5JHPj ¼ 12.8 Hz, JHH ¼ 6.8 Hz, 12H, CH(CH3)2), 1.20
m
(MoKa) ¼ 4.966 mmꢁ1
;
rcalcd ¼ 1.678 g cmꢁ3
;
q
-range ¼ 4.00e
3
3
(A6M2XX0M2 A6 , N ¼ j JHP
þ
5JHPj ¼ 15.2 Hz, JHH ¼ 7.6 Hz, 12H,
26.80ꢀ; data collected: 38361; independent data [Io>2
s(Io)/all data/
0
0
2
CH(CH3)2), 1.54 (d, JHP ¼ 6.8 Hz, 9H, P(CH3)3), 1.85 (m, 4H, PCH2),
Rint]: 5102/5995/0.056; data/restraints/parameter: 5995/0/295; R1
1.96 (m, 4H, CH(CH3)2), 3.43 (m, 4H, NCH2). 13C {1H} NMR
[Io>2s(Io)/all data]: 0.0259/0.0329; wR2 [Io>2s(Io)/all data]:
(100.6 MHz):
d
¼ 18.1 (s, CH3), 20.3 (s, CH3), 25.9 (d, 1JCP ¼ 29.2 Hz,
0.0619/0.0638; GOF ¼ 1.035; Drmax/min: 2.21/ꢁ1.18 eÅꢁ3. Com-
pound 3PMe3: Crystal data: formula: C19H45IrNP3; Mr ¼ 572.69;
crystal color and shape: orange fragment, crystal dimensions:
0.30 ꢂ 0.46 ꢂ 0.61 mm; crystal system: monoclinic; space group:
P(CH3)3), 26.6 (A2XX0A02, N ¼ j1JHP þ 3JHPj ¼ 13.1 Hz, CH(CH3)2), 28.6
(A2MXM0A02, N ¼ j1JHP þ 3JHPj ¼ 12.3 Hz, 3JCP ¼ 5.3 Hz PCH2), 62.6 (s
(br), NCH2). 31P {1H} NMR (161.8 MHz):
d
¼ 68.1 (d, 2JPP ¼ 18.3 Hz,
2
PiPr2), ꢁ55.2 (t, JPP ¼ 18.3 Hz, P(CH3)3).
P21/c (no. 14)ꢀ; a ¼ 10.1460(4), b ¼ 14.3405(5), c ¼ 16.9529(8) A,
ꢀ
3
ꢀ
b
¼ 97.606(4) ; V ¼ 2444.92(17) A ; Z ¼ 4;
m
(MoKa) ¼ 5.660 mmꢁ1
;
4.3.4. [Ir(PMe3)(MePNPiPr)]OTf (5)
rcalcd ¼ 1.556 g cmꢁ3
;
q
-range ¼ 4.05e26.81ꢀ; data collected:
MeOTf (4.7 mg, 3.2
mL, 28
m
mol) is added to a solution of [Ir(P-
35823; independent data [Io>2s(Io)/all data/Rint]: 5049/5169/
Me3)(PNPiPr)] (3PMe3) (15.3 mg, 28
mmol) in toluene (2 mL) and
0.058; data/restraints/parameter: 5169/0/229; R1 [Io>2
s
(Io)/all
stirred for 30 min until a yellow solid is formed. After removing of
all volatiles, the product is washed twice with diethylether and
dried i. vac. to give microcrystalline, yellow 5. Yield 19 mg
(0.026 mmol; 91%). Anal. Calcd. for C21H48F3IrNO3P3S (736.81): C,
34.23; H, 6.57; N, 1.90; S, 4.35. Found: C, 33.79; H, 6.20; N, 1.91; S,
data]: 0.0207/0.0217; wR2 [Io>2s(Io)/all data]: 0.0454/0.0458;
GOF ¼ 1.272; Drmax/min: 0.87/ꢁ0.74 eÅꢁ3
.
Acknowledgments
4.32. NMR (d6-acetone, r.t., [ppm]) 1H NMR (399.8 MHz):
d
¼ 1.24e
The authors thank the Deutsche Forschungsgemeinschaft (Emmy-
Noether Programm SCHN950/2-1) and the IDK NanoCat for funding.
2
1.43 (m, 24 H, CH3), 1.71 (d, JPH ¼ 8.8 Hz, 9H, P(CH3)3), 2.25e2.31
(m, 4H, PCH2), 2.25e2.31 (m, 4H, PCH2), 2.34e2.41 (m, 2H,
CH(CH3)2), 2.46e2.54 (m, 2H, CH(CH3)2), 2.70 (s, 3H, NCH3), 2.81e
2.91 (m, 2H, NCH2), 2.99e3.11 (m, 2H, NCH2). 13C {1H} NMR
Appendix A. Supplementary material
(100.6 MHz):
d
¼ 16.7 (s, CH3), 18.8 (s, CH3), 20.0 (s, CH3), 20.8 (m,
CCDC 929265 and 929266 contain the supplementary crystal-
lographic data for this paper. This data can be obtained free of
PCH2), 22.6 (d, PCH3, 1JCP ¼ 37.6 Hz), 23.1 (m, CH(CH3)2), 25.1 (m,