Journal of the American Chemical Society
Communication
Table 3. One-Pot Indole Synthesis from Cyclohexenyl
Derivatives
AUTHOR INFORMATION
■
a
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation
(CHE 1213246).
REFERENCES
■
(1) For reviews, see: (a) Lipshutz, B. H. Chem. Rev. 1986, 86, 795−
819. (b) Sundberg, R. J. In Comphensive Heterocyclic Chemistry II;
Katrizky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press:
Oxford, U.K., 1996; Vol. 2, pp 119−206. (c) Hoffmann, H.; Lindel, T.
Synlett 2003, 1753−1783. (d) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.
Chem. Rev. 2008, 108, 264−287. (e) Heugebaert, T. S. A.; Roman, B.
I.; Stevens, C. V. Chem. Soc. Rev. 2012, 41, 5626−5640. (f) Kathirav,
M. K.; Salake, A. B.; Chothe, A. S.; Dudhe, P. B.; Watode, R. P.;
Mukta, M. S.; Gadhwe, S. Bioorg. Med. Chem. 2012, 20, 5678−5698.
(2) For recent reviews, see: (a) Ferreira, V. F.; De Souza, M. C. B. V.;
Cunha, A. C.; Pereira, L. O. R.; Ferreira, M. L. G. Org. Prep. Proced. Int.
a
3 (1.00 mmol, 1.0 equiv), TsN3 (1.00 mmol, 1.0 equiv), and CuTC
(0.05 mmol, 0.05 equiv) were combined in 1,2-DCE (2.0 mL) for 3−4
h followed by Rh2(esp)2 (0.01 mmol, 0.01 equiv) in 1,2-DCE (1 mL)
with heating at 60 °C for 2−4 h until consumption of 1 was apparent
by TLC analysis. Then DDQ (2.00 mmol, 2.0 equiv) suspended in
1,2-DCE (3 mL) was added, and the mixture was heated at 60 °C for 1
́ ́
2001, 33, 411−454. (b) Estevez, V.; Villacampa, M.; Menendez, J. C.
Chem. Soc. Rev. 2010, 39, 4402−4421. (c) Young, I. S.; Thornton, P.
D.; Thompson, A. Nat. Prod. Rep. 2010, 27, 1801−1839.
(3) For reviews, see: (a) Furstner, A. Synlett 1999, 1523−1533.
̈
b
h. Isolated yields of purified products are shown. 4 h at 40 °C after
the addition of DDQ (2.0 equiv).
(b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, No. x, 121−141. For
recent examples, see: (c) Dudnik, A. S.; Sromek, A. W.; Rubina, M.;
Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130,
1440−1452. (d) Liu, W.; Jiang, H.; Huang, L. Org. Lett. 2010, 12,
312−315. (e) Kim, J. H.; Lee, S. B.; Lee, W. K.; Yoon, D.; Ha, H.
Tetrahedron 2011, 67, 3553−3558. (f) Wang, H.; Mueller, D. S.;
Sachwani, R. M.; Kapadia, R.; Londino, H. N.; Anderson, L. L. J. Org.
Chem. 2011, 76, 3203−3221. (g) Chen, F.; Shen, T.; Cui, Y.; Jiao, N.
Org. Lett. 2012, 14, 4926−4929. (h) Billedeau, R. J.; Klein, K. R.;
Kaplan, D.; Lou, Y. Org. Lett. 2013, 15, 1421−1423.
Scheme 3. Proposed Mechanism for Pyrrole Formation
(4) For reviews, see: (a) Davies, H. M. L.; Denton, J. R. Chem. Soc.
Rev. 2009, 38, 3061−3071. (b) Davies, H. M. L.; Manning, J. R. Nature
2008, 451, 417−424. (c) Davies, H. M. L.; Morton, D. Chem. Soc. Rev.
2011, 40, 1857−1869. (d) Davies, H. M. L. Morton, D. Science of
Synthesis: Stereoselective Synthesis; De Vries, J. G., Molander, G. A.,
Evans, A. P., Eds.; Thieme: Stuttgart, Germany, 2011; Vol. 3, p 513.
(5) (a) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463−4466.
(b) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int.
Ed. 2007, 46, 4757−4759. (c) Horneff, T.; Chuprakov, S.; Chernyak,
N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972−
14974.
(6) For other reactions of carbenes derived from triazoles, see:
(a) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. J.
Am. Chem. Soc. 2009, 131, 18034−18035. (b) Grimster, N.; Zhang, L.;
Fokin, V. V. J. Am. Chem. Soc. 2010, 132, 2510−2511. (c) Chuprakov,
S.; Malik, J. A.; Zibinsky, M.; Fokin, V. V. J. Am. Chem. Soc. 2011, 133,
10352−10355. (d) Selander, N.; Worrell, B. T.; Chuprakov, S.;
Velaparthi, S.; Fokin, V. V. J. Am. Chem. Soc. 2012, 134, 14670−14673.
(e) Muira, T.; Biyajima, T.; Fujii, T.; Murakami, M. J. Am. Chem. Soc.
2012, 134, 194−196. (f) Miura, T.; Funakoshi, Y.; Morimoto, M.;
Biyajima, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 17440−
17443. (g) Selander, N.; Fokin, V. V. J. Am. Chem. Soc. 2012, 134,
2477−2480. (h) Selander, N.; Worrell, B. T.; Fokin, V. V. Angew.
Chem. 2012, 124, 13231−13234.
an intramolecular rhodium-catalyzed cyclization of 4-alkenyl-1-
sulfonyl-1,2,3-triazoles. This reaction was further extended to a
one-pot synthesis of indoles starting from cyclic enynes. The
substrate scope of this transformation is broad and the products
are formed under mild reaction conditions, enabling the
extension of this methodology to more complex frameworks.
This novel transformation contrasts with the vast majority of
reactions of N-sulfonyltriazoles, which involve intermolecular
reactions of the iminocarbene intermediates.
(7) (a) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52,
1507−1510. (b) Parr, B. T.; Green, S. A.; Davies, H. M. L. J. Am.
Chem. Soc. 2013, 135, 4716−4718. (c) Schultz, E. E.; Sarpong, R. J.
Am. Chem. Soc. 2013, 135, 4696−4699. (d) Chuprakov, S.; Kwok, S.
W.; Fokin, V. V. J. Am. Chem. Soc. 2013, 135, 4652−4655.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthetic details and spectral data. This material is available free
(8) Alford, J. S.; Davies, H. M. L. Org. Lett. 2012, 14, 6020−6023.
C
dx.doi.org/10.1021/ja405043g | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX