Journal of the American Chemical Society
Communication
Chem. Rev. 2010, 110, 624. (h) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147. (j) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack- Kreutzer,
J.; Baudoin, O. Chem.Eur. J. 2010, 16, 2654. (k) Chen, X.; Engle, K.
M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(9) (a) Kondo, T.; Okada, T.; Mitsudo, T.-A. Organometallics 1999, 18,
4123. (b) Ko, S.; Han, H.; Chang, S. Org. Lett. 2003, 5, 2687.
(c) Armanino, N.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 6814.
(d) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc.
2009, 131, 5070. (e) Miyazaki, Y.; Yamada, Y.; Nakao, Y.; Hiyama, T.
Chem. Lett. 2012, 41, 298.
In conclusion, we report a new class of air and moisture stable
and readily accessible chiral bulky diaminophosphine oxide
preligands. We demonstrate their potential for asymmetric early/
late heterobimetallic catalysis with nickel(0)/Lewis acid
catalyzed C−H activations of formamides providing a comple-
mentary access to chiral γ-lactams. The diaminophosphineoxide
ligand is believed to simultaneously bond to the nickel center and
the aluminum Lewis acid resulting in superior reactivity and
performance.
(10) Reviews on hydroacylations: (a) Jun, C.-H.; Jo, E.-A.; Park, J.-W.
Eur. J. Org. Chem. 2007, 1869. (b) Willis, M. C. Chem. Rev. 2010, 110,
725.
ASSOCIATED CONTENT
* Supporting Information
Procedures and characterization data. This material is available
■
S
(11) Recent examples of in asymmetric C−Het, C−C, and C−H
functionalizations: (a) Seiser, T.; Roth, O. A.; Cramer, N. Angew. Chem.,
Int. Ed. 2009, 48, 6320. (b) Albicker, M. R.; Cramer, N. Angew. Chem.,
Int. Ed. 2009, 48, 9139. (c) Tran, D. N.; Cramer, N. Angew. Chem., Int.
Ed. 2011, 50, 11098. (d) Saget, T.; Lemouzy, S.; Cramer, N. Angew.
Chem., Int. Ed. 2012, 51, 2238. (e) Ye, B.; Cramer, N. Science 2012, 338,
504. (f) Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 12842.
(g) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(12) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In The Alkaloids:
Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon
Press: Amsterdam, 1990; pp 1−161.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(13) Other Ni(0) or Ni(II) sources were not successful.
This work is supported by the European Research Council under
the European Community’s Seventh Framework Program (FP7
2007−2013)/ERC grant agreement no. 257891 and the Swiss
National Science Foundation (no. 137666). We thank Dr. R.
Scopelliti for X-ray crystallographic analysis of SPO5.
(14) Combinations with several chiral phosphines were evaluated but
were found to be not superior to combinations with achiral phosphines.
(15) Representative examples of secondary heteroatom-substituted
phosphine oxides as ligands in transition-metal catalysis: (a) Ackermann,
L.; Born, R. Angew. Chem., Int. Ed. 2005, 44, 2444. (b) Ackermann, L.;
Born, R.; Spatz, J. H.; Meyer, D. Angew. Chem., Int. Ed. 2005, 44, 7216.
(c) Ackermann, L.; Kapdi, A. R.; Fenner, S.; Kornhaaß, C.; Schulzke, C.
Chem.Eur. J. 2011, 17, 2965. for an overview, see: (d) Ackermann, L.
Isr. J. Chem. 2010, 50, 652.
(16) (a) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano,
K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690. (b) Nemoto, T.;
Masuda, T.; Matsumoto, T.; Hamada, Y. J. Org. Chem. 2005, 70, 7172.
(c) Nemoto, T.; Sakamoto, T.; Matsumoto, T.; Hamada, Y. Tetrahedron
Lett. 2006, 47, 8737. (d) Nemoto, T.; Hamada, Y. Chem. Rec. 2007, 7,
150. (e) Nemoto, T.; Hamada, Y. Tetrahedron 2011, 67, 667.
(17) Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.;
REFERENCES
■
(1) Phosphorous Ligand in Asymmetric Catalysis; Borner, A., Ed; Wiley-
VCH: Weinheim, 2008.
(2) Reviews: (a) Dubrovina, N. V.; Borner, A. Angew. Chem., Int. Ed.
2004, 43, 5883. (b) Ackermann, L.; Born, R.; Spatz, J. H.; Althammer,
A.; Gschrei, C. J. Pure Appl. Chem. 2006, 78, 209. (c) Ackermann, L.
Synthesis 2006, 1557. (d) Shaikh, T. M.; Weng, C.-M.; Hong, F.-E.
Coord. Chem. Rev. 2012, 256, 771.
(3) Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.;
Spannenberg, A.; Baumann, W.; Franke, R.; Borner, A. Eur. J. Org. Chem.
̈
̈
̈
Sturmer, R. Angew. Chem., Int. Ed. 2004, 43, 788.
̈
2010, 2733.
(18) Crystallographic data for SPO5: CCDC 925530 contains
supplementary crystallographic data for this paper and can be obtained
free of charge via The Cambridge Crystallographic Data Centre (www.
(4) (a) Achard, T.; Giordano, L.; Tenaglia, A.; Gimbert, Y.; Buono, G.
Organometallics 2010, 29, 3936. (b) Christiansen, A.; Selent, D.;
Spannenberg, A.; Baumann, W.; Franke, R.; Borner, A. Organometallics
̈
2010, 29, 3139.
(19) Synthesis and use of chiral carbene ligands derived from the same
(5) Bimetallic catalysis overviews: (a) Bullock, R. M.; Casey, C. P. Acc.
Chem. Res. 1987, 20, 167. (b) Stephan, D. W. Coord. Chem. Rev. 1989,
95, 41. (c) Wheatley, N.; Kalck, P. Chem. Rev. 1999, 99, 3379.
(d) Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catal. Rev. Sci. Eng.
2012, 54, 1.
(6) Nickel/magnesium bimetallic cooperation has been suggested with
secondary phosphine oxides for Kumada-Corriu cross-couplings of aryl
fluorides: (a) Ackermann, L.; Althammer, A. Chem. Unserer Zeit 2009,
43, 74. (b) Jin, Z.; Li, Y.-J.; Ma, Y.-Q.; Qiu, L.-L.; Fang, J.-X. Chem.Eur.
J. 2012, 18, 446.
(7) For suggested nickel/magnesium bimetallic cooperation in
Kumada-Corriu cross-couplings with a different ligand class: (a) Yoshi-
kai, N.; Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 17978.
(b) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009,
131, 9590.
chiral amines: (a) Kundig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernardinelli, G.
̈
Angew. Chem., Int. Ed. 2007, 46, 8484. (b) Nakanishi, M.; Katayev, D.;
Besnard, C.; Kundig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438.
̈
(c) Banerjee, D.; Besnard, C.; Kundig, E. P. Organometallics 2012, 31,
709.
̈
(20) For determination of the absolute configuration, see Supporting
Information.
(21) Lower amounts of AlMe3 reduced conversion without influencing
enantioselectivity. Employed amounts of AlMe3 compensate for residual
moisture in the reaction mixture and binds to the pyrrolidone product.
(22) Possible activation via five-coordinate aluminum species:
(a) Elms, F. M.; Gardiner, M. G.; Koutsantonis, G. A.; Raston, C. L.;
Atwood, J. L.; Robinson, K. D. J. Organomet. Chem. 1993, 449, 45.
(b) Mitra, A.; DePue, L. J.; Parkin, S.; Atwoodm, D. A. J. Am. Chem. Soc.
2006, 128, 1147.
(8) Reviews on C−H functionalization: (a) Kuhl, N.; Hopkinson, M.
N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51,
10236. (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int.
Ed. 2012, 51, 8960. (c) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(d) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40,
1885. (e) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
(f) Yu, J.-Q.; Shi, Z.-J. In Topics in Current Chemistry 292; Springer-
Verlag: Berlin, 2010. (g) Colby, D. A.; Bergman, R. G.; Ellman, J. A.
(23) Preliminary results with nonterminal alkene substrates provide
hydrocarbamoylated products in lower selectivities.
(24) Nifant’ev, E. E.; Trofimtsova, I. A.; Chekulaeva, L. A.;
Chechegoeva, E. V.; Gavrilenko, V. V. Zh. Obshch. Khim. 1992, 62, 1027.
D
dx.doi.org/10.1021/ja406730t | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX