1262
M. M. Brahmi et al.
CLUSTER
recent references, see: (c) Tsurumaki, E.; Hayashi, S.-Y.;
Tham, F. S.; Reed, C. A.; Osuka, A. J. Am. Chem. Soc. 2011,
133, 11956. (d) Someya, C. I.; Inoue, S.; Praesang, C.; Irran,
E.; Driess, M. Chem. Commun. 2011, 47, 6599.
Ar
B+
N
N
–
Ph3C+
BF4
H
A
(e) Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, 133,
20056. (f) Mansaray, H. B.; Rowe, A. D. L.; Phillips, N.;
Niemeyer, J.; Kelly, M.; Addy, D. A.; Bates, J. I.; Aldridge,
S. Chem. Commun. 2011, 47, 12295. (g) Ines, B.; Patil, M.;
Carreras, J.; Goddard, R.; Thiel, W.; Alcarazo, M. Angew.
Chem. Int. Ed. 2011, 50, 8400. (h) Del, G. A.; Singleton, P.
J.; Muryn, C. A.; Ingleson, M. J. Angew. Chem. Int. Ed.
2011, 50, 2102. (i) Del, G. A.; Helm, M. D.; Solomon, S. A.;
Caras-Quintero, D.; Ingleson, M. J. Chem. Commun. 2011,
47, 12459. (j) De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.;
Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679.
Ar
Ar
N
N
N
B
B
H
F
N
H
H
8
1
+
BF3
(a) Ar is electron-rich: ligand exchange
Ar
N
F
Ar
B
N
N
BF3
+
+
B
B
(2) (a) Matsumoto, T.; Gabbaï, F. P. Organometallics 2009, 28,
4252. (b) Tsai, J.-H.; Lin, S.-T.; Yang, R. B.-G.; Yap, G. P.
A.; Ong, T.-G. Organometallics 2010, 29, 4004.
(c) McArthur, D.; Butts, C. P.; Lindsay, D. M. Chem.
Commun. 2011, 47, 6650. (d) Solovyev, A.; Geib, S. J.;
Lacôte, E.; Curran, D. P. Organometallics 2012, 31, 54. For
a review on NHC-borane chemistry, see: (e) Curran, D. P.;
Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.;
Malacria, M.; Lacôte, E. Angew. Chem. Int. Ed. 2011, 50,
10294.
F
F
F
H
N
F
H
8
3, 4
(b) Ar is electron-deficient: protonation
Ar
BF3
N
N
8
PhOH
+O
BF3
B
F
– H2
– PhO BF2
Ph
H
F
2
(3) Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.;
Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc.
2010, 132, 15072.
Scheme 4 Proposed mechanism
(4) (a) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. J. Am.
Chem. Soc. 2012, 134, 17384. (b) Farrell, J. M.; Hatnean, J.
A.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 15728.
(c) Chen, J.; Lalancette, R. A.; Jäkle, F. Chem. Commun.
2013, 49, 4893.
(5) Walton, J. C.; Makhlouf Brahmi, M.; Monot, J.;
Fensterbank, L.; Malacria, M.; Curran, D. P.; Lacôte, E. J.
Am. Chem. Soc. 2011, 133, 10312.
(6) (a) Hudnall, T. W.; Gabbaï, F. P. J. Am. Chem. Soc. 2007,
129, 11978. (b) Chiu, C.-W.; Gabbaï, F. P. Organometallics
2008, 27, 1657.
(7) (a) De Vries, T. S.; Vedejs, E. Organometallics 2007, 26,
3079. (b) Funke, M.-A.; Mayr, H. Chem. Eur. J. 1997, 3,
1214.
acidic BF3. This certainly also reduces the steric strain in
the case of the more sterically demanding IPr carbene.
When there is no substituent, as is the case with 5 (Scheme
3, a), the reaction paths compete as we isolated com-
pounds from NHC exchange with both BF3 and PhO–BF2.
To conclude, we have expanded the understanding of
NHC–borane and electronic borenium chemistries. The
subtituents at boron provide a handle to steer the reactivity
through electronic effects beside steric effects. This latter
possibility has been demonstrated for fluorine introduc-
tion, but it also opens perspectives for controlling other
borenium-based reactions, such hydroborations, electro-
philic borylations, as well as catalytic hydrogenations.
(8) General Procedure
To a solution of NHC–borane complex (1 equiv) in CH2Cl2
(0.07 M) was added the triphenylcarbenium derivative
(1 equiv), then phenol (1 equiv). The reaction mixture was
stirred at r.t. for 5 min. The solvent was then evaporated in
vacuo, and the residue was purified by flash chromatography.
Typical Characterization Data for Compound 2a
Mp 222–227 °C. IR (diamond): ν = 2960, 2930, 2870, 2360
(B–F), 1460, 1260, 1060, 1015, 930, 800, 760, 735 cm–1. 1H
NMR (400 MHz, CDCl3): δ = 7.50 (t, J = 7.8 Hz, 2 H, p-H
of IPr), 7.28 (d, J = 7.8 Hz, 4 H, m-H of IPr), 7.04 (s, 2 H,
NCH), 6.94 (t, J = 6.9 Hz, 1 H, p-H of Ph), 6.88 (t, J = 6.8
Hz, 2 H, m-H of Ph), 6.77 (d, J = 6.6 Hz, 2 H, o-H of Ph),
2.61–2.55 [m, 4 H, CH(CH3)2], 1.20 [d, J = 6.8 Hz, 12 H,
CH(CH3)2], 1.13 [d, J = 6.8 Hz, 12 H, CH(CH3)2]. 13C NMR
(100 MHz, CDCl3): δ = 145.5 (C arom.), 134.2 (C arom.),
131.7 (CH arom.), 130.4 (CH arom.), 126.6 (CH arom.),
125.9 (CH arom.), 123.8 (NCH), 123.8 (CH arom.), 29.0
Acknowledgment
This work was supported by grants from ANR (BLAN0309 Radi-
caux Verts and 08-CEXC-011-01, Borane), CNRS, UPMC, and
IUF (L. F., M. M.). Technical assistance (MS, elemental analyses)
was generously offered by FR 2769. We thank Ms. Hélène Rousse-
lière and Dr. Lise-Marie Chamoreau (UPMC) for the X-ray diffrac-
tion analysis.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
[CH(CH3)2], 25.9 (CHCH3CH3), 22.3 (CHCH3CH3). 11
B
NMR (133 MHz, BF3·OEt2): δ = 4.8 (br s). 19F NMR (376
MHz, CFCl3): δ = –153.2 (br s). HRMS: m/z calcd. for
C33H41N211BF2Na [M + Na]+: 537.3223; found: 537.3224.
(1) For reviews, see: (a) De Vries, T. S.; Prokofjevs, A.; Vedejs,
E. Chem. Rev. 2012, 112, 4642. (b) Piers, W. E.; Bourke, S.
C.; Conroy, K. D. Angew. Chem. Int. Ed. 2005, 44, 5016. For
Synlett 2013, 24, 1260–1262
© Georg Thieme Verlag Stuttgart · New York