ChemComm
Communication
9 Y. U. Kwon, C. Lee and S. K. Chung, J. Org. Chem., 2002, 67,
3327–3338.
10 P. R. J. Gaffney and C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 2001,
192–205.
11 S. J. Conway, J. Gardiner, S. J. A. Grove, M. K. Johns, Z. Y. Lim,
G. F. Painter, D. E. J. E. Robinson, C. Schieber, J. W. Thuring,
L. S. M. Wong, M. X. Yin, A. W. Burgess, B. Catimel, P. T. Hawkins,
N. T. Ktistakis, L. R. Stephens and A. B. Holmes, Org. Biomol. Chem.,
2010, 8, 66–76.
12 C. E. Dreef, C. J. J. Elie, P. Hoogerhout, G. A. Vandermarel and
J. H. Vanboom, Tetrahedron Lett., 1988, 29, 6513–6516.
13 M. Bru, S. P. Kotkar, N. Kar and M. Kohn, Chem. Sci., 2012, 3,
1893–1902.
14 Review on organocatalytic desymmetrizations see: A. Enriquez-Garcia
and E. P. Kundig, Chem. Soc. Rev., 2012, 41, 7803–7831.
15 B. R. Sculimbrene and S. J. Miller, J. Am. Chem. Soc., 2001, 123,
10125–10126.
16 B. R. Sculimbrene, A. J. Morgan and S. J. Miller, J. Am. Chem. Soc.,
2002, 124, 11653–11656.
17 B. R. Sculimbrene, A. J. Morgan and S. J. Miller, Chem. Commun.,
2003, 1781–1785.
18 B. R. Sculimbrene, Y. J. Xu and S. J. Miller, J. Am. Chem. Soc., 2004,
126, 13182–13183.
19 Y. J. Xu, B. R. Sculimbrene and S. J. Miller, J. Org. Chem., 2006, 71,
4919–4928.
20 S. J. Miller, Acc. Chem. Res., 2004, 37, 601–610.
21 A. J. Morgan, Y. K. Wang, M. F. Roberts and S. J. Miller, J. Am. Chem.
Soc., 2004, 126, 15370–15371.
22 P. A. Jordan, K. J. Kayser-Bricker and S. J. Miller, Proc. Natl. Acad. Sci.
U. S. A., 2010, 107, 20620–20624.
23 S. France, D. J. Guerin, S. J. Miller and T. Lectka, Chem. Rev., 2003,
103, 2985–3012.
24 G. C. Fu, Acc. Chem. Res., 2004, 37, 542–547.
25 R. P. Wurz, Chem. Rev., 2007, 107, 5570–5595.
26 P. R. Schreiner and C. E. Mu¨ller, Angew. Chem., Int. Ed., 2011, 50,
6012–6042.
27 K. Laumen and O. Ghisalba, Biosci., Biotechnol., Biochem., 1994, 58,
2046–2049.
We have demonstrated the highly enantioselective desym-
metrization of 4,6-diprotected myo-inositol derivatives by acyl-
ation. The nucleophilic catalyst (one step) as well as the starting
materials (three steps) are readily accessible from commercially
available starting materials. The chiral products were obtained
in high yield with excellent enantiomeric excess providing
access to orthogonally protected enantiopure starting materials
for the synthesis of biologically active myo-inositol phosphates.
Notes and references
‡ X-ray crystal structure analysis 9: formula C34H31BrO8 Â 2H2O, M =
683.53, colourless crystal, 0.28 Â 0.23 Â 0.23 mm, a = 11.9744(2), b =
8.0367(2), c = 17.1372(3) Å, b = 108.858(1)1, V = 1560.67(2) Å3, rcalc
=
1.455 g cmÀ3, m = 1.376 mmÀ1, empirical absorption correction
(0.699 r T r 0.742), Z = 2, monoclinic, space group P21 (no. 4), l =
0.71073 Å, T = 223(2) K, o and j scans, 8893 reflections collected
(Æh, Æk, Æl), [(sin y)/l] = 0.67 ÅÀ1, 4744 independent (Rint = 0.021) and
4550 observed reflections [I > 2s(I)], 439 refined parameters, R = 0.031,
wR2 = 0.070, max. (min.) residual electron density 0.17(À0.21) e ÅÀ3
,
hydrogen atom at O51 was refined freely; the hydrogen atoms from the
water molecule (O71, O72 and O72A) were refined freely, but with O–H
distance restraints (SADI) and with a fixed U-value. The Flack parameter
was refined to À0.014(8); data sets were collected using a Nonius
KappaCCD diffractometer. Programs used: data collection, COLLECT
(Nonius B.V., 1998); data reduction Denzo-SMN (Z. Otwinowski, W. Minor,
Methods Enzymol. 1997, 276, 307–326); absorption correction, Denzo
(Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr., Sect. A:
Fundam. Crystallogr., 2003, 59, 228–234); structure solution SHELXS-97
(G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1990,
46, 467–473); structure refinement SHELXL-97 (G. M. Sheldrick,
Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112–122) and
graphics, XP (BrukerAXS, 2000). R-values are given for observed reflec-
tions, and wR2 values are given for all reflections.
1 M. D. Best, H. L. Zhang and G. D. Prestwich, Nat. Prod. Rep., 2010, 28 S. Mizuta, M. Sadamori, T. Fujimoto and I. Yamamoto, Angew.
27, 1403–1430.
Chem., Int. Ed., 2003, 42, 3383–3385.
29 K. M. Sureshan, M. S. Shashidhar, T. Praveen and T. Das,
Chem. Rev., 2003, 103, 4477–4503.
30 A. M. Vibhute, A. Vidyasagar, S. Sarala and K. M. Sureshan,
Chem. Commun., 2012, 48, 2448–2450.
31 D. C. Billington, R. Baker, J. J. Kulagowski, I. M. Mawer, J. P. Vacca,
S. J. Desolms and J. R. Huff, J. Chem. Soc., Perkin Trans. 1, 1989,
1423–1429.
2 G. D. Paolo and P. D. Camilli, Nature, 2006, 443, 651–657.
3 X. L. Guan and M. R. Wenk, Front. Biosci., 2008, 13, 3239–3251.
4 M. Krauss and V. Haucke, FEBS Lett., 2007, 581, 2105–2111.
5 J. R. Falck, U. M. Krishna and J. H. Capdevila, Bioorg. Med. Chem.
Lett., 2000, 10, 1711–1713.
6 R. J. Anderson, S. L. Osborne, F. A. Meunier and G. F. Painter, J. Org.
Chem., 2010, 75, 3541–3551.
7 S. K. Chung, Y. U. Kwon, J. H. Shin, Y. T. Chang, C. Lee, B. G. Shin, 32 S. Devaraj, M. S. Shashidhar and S. S. Dixit, Tetrahedron, 2005, 61,
K. C. Kim and M. J. Kim, J. Org. Chem., 2002, 67, 5626–5637.
8 R. J. Kubiak and K. S. Bruzik, J. Org. Chem., 2003, 68, 960–968.
529–536.
33 A. M. Riley and B. V. L. Potter, J. Org. Chem., 1995, 60, 4970–4971.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7409--7411 7411