Journal of the American Chemical Society
Page 10 of 12
The Supporting Information is available free of charge on the
ACS Publications website.
1
2
3
4
5
Experimental procedures and characterization data (PDF)
Crystallographic data for compound 2o (deposited in the Camꢀ
bridge Structural Database: CCDC1843443) (CIF)
lan, S. N.; Stahl, S. S.; Lancaster, K. M. J. Am. Chem. Soc. 2017, 139,
13507.
(7) For examples of enamine addition to a TEMPO+ equivalent (Lewꢀ
is acidꢀactivated TEMPO), see: (a) Van Humbeck, J.; Simonovich,
S.; Knowles, R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132,
10012. (b) Koike, T.; Akita, M. Chem. Lett. 2009, 38, 166. (c) Sibi, M.
P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124. For examples
of amine oxidation, see: (d) Semmelhack, M. F.; Schmid, C. R. J. Am.
Chem. Soc. 1983, 105, 6732. (e) Sonobe, T.; Oisaki, K.; Kanai, M.
Chem. Sci. 2012, 3, 3249. (f) Wu, Y.; Yi, H.; Lei, A. ACS Catal. 2018,
8, 1192.
6
7
8
9
AUTHOR INFORMATION
Corresponding Author
Song Lin: songlin@cornell.edu
Kyle Lancaster: kml236@cornell.edu
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
(8) (a) Babiarz, J. E.; Cunkle, G. T.; DeBellis, A. D.; Eveland, D.;
Pastor, S. D.; Shum, S. P. J. Org. Chem. 2002, 67, 6831. (b) Coseri,
S.; Ingold, K. U. Org. Lett. 2004, 6, 1641.
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(9)(a) Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U. J. Am. Chem.
Soc. 1992, 114, 4983. (b) Sobek, J.; Martschke, R.; Fischer, H. J. Am.
Chem. Soc., 2001, 123, 2849. (c) Gentry, E. C.; Rono, L. J.; Hale, M.
E.; Matsuura, R.; Knowles, R. R. J. Am. Chem. Soc. 2018, 140, 3394.
(d) Xu, F.; Zhu, L.; Zhu, S.; Yan, X.; Xu, H.ꢀC. Chem. Eur. J. 2014,
20, 12740. (e) Fuller, P. H.; Kim, J.ꢀW.; Chemler, S. R. J. Am. Chem.
Soc. 2008, 130, 17638. For a related work on reversible Ti radical
capture by TEMPO, see: (f) Huang, K.ꢀW.; Han, J. H.; Musgrave, C.
B.; Waymouth, R. M. Organometallics 2006, 25, 3317.
Financial support to S.L. was provided by Cornell University, the
Atkinson Center for a Sustainable Future, and NSF (CHEꢀ
1751839). K.M.L. gratefully acknowledges the Alfred P. Sloan
Foundation and NIGMS (R35 GM124908) for support. This study
made use of the Cornell Center for Materials Research Shared
Facilities supported from NSF MRSEC (DMRꢀ1719875), NMR
facility supported by the NSF (CHEꢀ1531632), and National Biꢀ
omedical Research Center for AdvanCed ESR Technology
(ACERT) laboratory supported by the NIGMS (P41GM103521).
G.S.S. is grateful for an NSF Graduate Fellowship (DGEꢀ
1650441); A.S. is grateful for an ACS SURF Award. We thank
Dr. Ivan Keresztes for help with NMR spectral analysis, Dr. Saꢀ
mantha MacMillan for help with Xꢀray crystallography analysis,
Dr. Bo Chen for discussions on the DFT calculation, and Dr. Keꢀ
Yin Ye for experimental assistance.
( 10 ) Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes,
D.; Charleux, B. Prog. Polym. Sci. 2013, 38, 63.
(11) (a) Maji, M. S.; Pfeifer, T.; Studer, A. Angew. Chem. Int. Ed.
2008, 47, 9547. (b) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129. (c)
Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K.
Tetrahedron Lett. 2001, 42, 3415. (d) Liwosz, T.; Chemler, S. R.
Synlett 2014, 26, 335.
(12) Li, Y.; Studer, A. Angew. Chem. Int. Ed. 2012, 51, 8221.
(13) TEMPO+/TEMPO has been used for the singleꢀelectron oxidaꢀ
tion of superoxide and reduction of peroxyl. See: (a) Krishna,
M.; Grahame, D.; Samuni, A.; Mitchell, J.; Russo A. Proc. Natl. Acad.
Sci. 1992, 89, 5537. (b) Griesser, M.; Shah, R.; Van Kessel, A. T.;
Zilka, O.; Haidasz, E. A.; Pratt, D. A. J. Am. Chem. Soc. 2018, 140,
3798. TEMPO+ has also been proposed to mediated a radical cyclizaꢀ
tion reaction (ref. 9d) via a singleꢀelectron pathway, although little
evidence was provided to support such a mechanism.
REFERENCES
(1) Lebedev, O. L.; Kazarnovsky, S. N. Tr. Khim. Khim. Tekhnol.
1959, 3, 649.
(14) For examples, see: (a) Knoop, C. A.; Studer, A. J. Am. Chem.
Soc. 2003, 125, 16327. (b) Hawker, C. J.; Bosman, A. W.; Harth, E.
Chem. Rev. 2001, 101, 3661. (c) Puts, R. D.; Sogah, D. Y. Macromol-
ecules 1996, 29, 3323. (d) Moad, G.; Rizzardo, E. Macromole-
cules 1995, 28 , 8722.
(2) For representative recent reviews, see: (a) Tebben, L.; Studer, A.
Angew. Chem. Int. Ed. 2011, 50, 5034. (b) Wertz, S.; Studer A. Green
Chem. 2013, 15, 3116. (c) Nutting, J. E.; Rafiee, M. R.; Stahl, S.
S. Chem. Rev. 2018, 118, 4834. (d) Leadbeater, N. E.; Bobbitt, J.
Aldrichimica Acta 2014, 47, 65.
(3) Greszta, D.; Matyjaszewski, K. Macromol. 1996, 29, 7661.
(4) Kato, Y.; Shimizu, Y.; Yijing, L.; Unoura, K.; Utsumi, H.; Ogata,
T. Electrochim. Acta. 1995, 40, 2799.
(5) For some examples, see: (a) Anelli P. L.; Biffi, C.; Montanari,
F.; Quici, S. J. Org. Chem. 1987, 52, 2559; (b) Hoover, J.; Stahl, S. S.
J. Am. Chem. Soc., 2011, 133, 16901; (c) Hoover, J. M.; Ryland, B.
L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357; (d) Bailey, W.
F.; Bobbitt, J. M. J. Org. Chem. 2007, 72, 4504. (e) Ganem, B. J. Org.
Chem. 1975, 40, 1998. (f) Hickey, D.; Milton, R.; Chen, D.; Sigman
M.; Minteer, S. ACS Catal., 2015, 5, 5519. (g) Semmelhack, M. F.;
Chou, C. S.; Cortes, D. A. J. Am. Chem. Soc. 1983, 105, 4492. (h) de
Nooy, A. E. J.; Besemer, A. C. Tetrahedron 1995, 51, 8023. (i) Bobꢀ
bitt, J. M.; Brückner, C.; Merbouch, N. Org. React. 2009, 74, 103.
(6) The oxidation of alcohol can also go through a singleꢀelectron
pathway relying on the TEMPO/TEMPO– redox cycle in the presence
of a copper catalyst. See: Badalyan, A.; Shannon, S. S. Nature 2016,
535, 406. A mechanistic study shows that this reaction is mediated by
a [Cu]–TEMPO complex in which the bound TEMPO behaves like
TEMPO+. See: Walroth, R. C.; Miles, K. C.; Lukens, J. T.; MacMilꢀ
(15) Fu, N.; Sauer, G.; Saha, A.; Loo, A.; Lin S. Science 2017, 357,
575.
(16) For representative reviews on synthetic electrochemistry, see: (a)
Moeller, K. D. Tetrahedron 2000, 56, 9527. (b) Yoshida, J.; Kataoka,
K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265. (c)
Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492. (d) Yan,
M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. (e)
Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvoꢀ
gel, S. R. Angew. Chem. Int. Ed. 2018, 57, 6018. (f) Mitsudo, K.;
Kurimoto, Y.; Yoshioka, K.; Suga, S. Chem. Rev. 2018, 118, 5985–
5999. (g) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
(17) For a review, see: (a) Bergmeier, S. C. Tetrahedron 2000, 56,
2561. For recent examples of aminooxygenation of alkenes, see: (b)
Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179. (c) Lu, D.ꢀF.;
Zhu, C.ꢀL.; Jia, Z.ꢀX.; Xu, H. J. Am. Chem. Soc. 2014, 136, 13186. (d)
Hemric, B. N.; Shen, K.; Wang, Q. J. Am. Chem. Soc. 2016, 138,
5813. (e) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.ꢀF.; Jiao, N. J.
Am. Chem. Soc. 2015, 137, 6059. Also see ref. 9e.
(18) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548.
(19) For examples, see: (a) Bruncko, M.; Schlingloff, G.; Sharpless,
K. B. Angew. Chem. Int. Ed. 1997, 36, 1483. (b) Michaelis, D. J.;
Shaffer, C. J.; Yoon, T. P. J. Am. Chem. Soc. 2007, 129, 1866. (c)
ACS Paragon Plus Environment