ChemComm
Communication
control experiment, the ineffective ‘‘acceptors’’, Lac@AuNP and
We thank the National Tsing Hua University, Academia
GM3@AuNP, were employed in parallel reactions. As expected, no Sinica, the National Science Council, Taiwan, and the Canadian
significant loss of colour in solution due to aggregate precipitation Institutes for Health Research (CIHR) for support of this work.
was seen after addition of EndoNF-DM, indicating that, as D.H.K. thanks the CIHR, the Canadian Blood Services and the
expected, GD3 is the minimal acceptor required for polysialylation Michael Smith Foundation for Health Research for fellowship
by a-2,8-PST (Fig. 3B).
support.
It is interesting that the more typical colour change of
AuNPs from the initial pinkish-red colour of well-dispersed
AuNPs to the purple colour that is normally seen with aggregated
AuNPs was not observed. Such a colour change is attributed to
the change of the inter-particle distance induced by binding and
the change of the dielectric constant around the surrounding
medium or the shell of the AuNPs. Since PST catalyzes formation
of PSA with 4 to 70 sialic acid residues and the EndoNF-DM
binds a minimum of 5 to 8 sialic acid residues, it seems probable
that the inter-particle distance of the cross-linked AuNPs is not
short enough to induce strong coupling between the adjacent
nanoparticles. Instead, a decrease in absorbance of the solution
at 525 nm resulted from the precipitation of PSA@AuNP aggre-
gates, which was facilitated by centrifugation.
Notes and references
1 (a) T. Janas and T. Janas, Biochim. Biophys. Acta, 2011, 1808, 2923;
(b) M. Mu¨hlenhoff, M. Eckhardt and R. Gerardy-Schahn, Curr. Opin.
Struct. Biol., 1998, 8, 558.
2 M. Mu¨hlenhoff, I. Oltmann-Norden, B. Weinhold, H. Hildebrandt
and R. Gerardy-Schahn, Biol. Chem., 2009, 390, 567.
3 T. Lindhout, U. Iqbal, L. Willis, M. A. N. Reid, J. Li, X. Liu, M. Moreno
and W. W. Wakarchuk, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 7397.
4 For vertebrate: (a) M. Eckhardt and R. Gerardy-Schahn, Glycobiology,
1998, 8, 1165; (b) N. Kojima, Y. Tachida, Y. Yoshida and S. Tsuji,
J. Biol. Chem., 1996, 271, 19457; (c) M. Mu¨hlenhoff, M. Eckhardt,
A. Bethe, M. Frosch and R. Gerardy-Schahn, Curr. Biol., 1996,
6, 1188; For bacterial: (d) J.-W. Cho and F. A. Troy II, Proc. Natl.
Acad. Sci. U. S. A., 1994, 91, 11427; (e) M. Frosch, C. Weisgerber and
T. F. Meyer, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 1669.
5 C. D. Rillahan, S. J. Brown, A. C. Register, H. Rosen and J. C. Paulson,
Angew. Chem., Int. Ed., 2011, 50, 12534.
The optimal concentration of EndoNF-DM for particle-bound
PSA recognition by EndoNF-DM was examined, as shown in Fig. S3
(ESI†). A linear correlation between PSA@AuNP absorbance and
EndoNF-DM concentration was found. Optimum conditions for
EndoNF-DM were an incubation time of 30 min at room tempera-
ture in the presence of >3 mM (210 mg mLÀ1) EndoNF-DM. The
linearity of the response with PST concentration in E. coli cell lysate
was also investigated. As illustrated in Fig. 3C, the absorbance
decreased with an increase in PST concentration resulting in a
near-linear correlation between the enzyme concentration and the
absorbance (Fig. 3C, inset), up to a PST concentration of 1.5 mM.
Thus, detection of PST in the nanomolar to micromolar range can
be achieved using this assay. Moreover, since GD3@AuNPs are
stable in a high ionic strength solution, this assay can be performed
in the presence of cell lysate without the concern of self-aggregation,
making directed evolution screening a reality.
In conclusion, we have developed a novel strategy for
sensitive and specific activity assay of a-2,8-PST based on the
assembly of PSA@AuNPs into network structures mediated
by an engineered inactive endosialidase which specifically
recognizes the PSA chain. To the best of our knowledge, this
study introduces the first high-throughput AuNP-based colori-
metric assay for a bond-forming enzyme. The assay has several
advantages over traditional techniques: (i) the use of a label-
6 (a) T. G. Keys, F. Freiberger, J. Ehrit, J. Krueger, K. Eggers, F. F. R.
Buettner and R. Gerardy-Schahn, Anal. Biochem., 2012, 427, 107;
(b) L. M. Willis, M. Gilbert, M.-F. Karwaski, M.-C. Blanchard and
W. W. Wakarchuk, Glycobiology, 2008, 18, 177.
7 (a) W. R. Algar, D. E. Prasuhn, M. H. Stewart, T. L. Jennings,
J. B. Blanco-Canosa, P. E. Dawson and I. L. Medintz, Bioconjugate
Chem., 2011, 22, 825; (b) J. Gao, H. Gu and B. Xu, Acc. Chem. Res.,
2009, 42, 1097.
´
8 (a) M. Perfezou, A. Turner and A. Merkoçi, Chem. Soc. Rev., 2012,
41, 2606; (b) S. Tokonami, Y. Yamamoto, H. Shiigi and T. Nagaoka,
Anal. Chim. Acta, 2012, 716, 76.
9 (a) K. Saha, S. S. Agasti, C. Kim, X. Li and V. M. Rotello, Chem. Rev.,
2012, 112, 2739; (b) H. Jans and Q. Huo, Chem. Soc. Rev., 2012,
41, 2849; (c) X. Cao, Y. Ye and S. Liu, Anal. Biochem., 2011, 417, 1.
10 (a) L. Dykman and N. Khlebtsov, Chem. Soc. Rev., 2012, 41, 2256;
(b) D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich,
P. C. Patel and C. A. Mirkin, Angew. Chem., Int. Ed., 2010, 49, 3280.
ˇ
ˇ ˇ
ˇ´
´
˘
11 D. S´ykora, V. Kasicka, I. Miksık, P. Rezanka, K. Zaruba, P. Matejka
´
and V. Kral, J. Sep. Sci., 2010, 33, 372.
12 C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany,
E. C. Goldsmith and S. C. Baxter, Acc. Chem. Res., 2008, 41, 1721.
13 (a) Z. Zhen, L.-J. Tang, H. Long and J.-H. Jiang, Anal. Chem., 2012,
84, 3614; (b) S. Gupta, H. Andresen and M. M. Stevens, Chem.
Commun., 2011, 47, 2249; (c) Y. Choi, N.-H. Ho and C.-H. Tung,
Angew. Chem., Int. Ed., 2007, 46, 707; (d) C. Guarise, L. Pasquato,
V. De Filippis and P. Scrimin, Proc. Natl. Acad. Sci. U. S. A., 2006,
103, 3978.
14 A. Jokilammi, P. Ollikka, M. Korja, E. Jakobsson, V. Loimaranta,
S. Haataja, H. Hirvonen and J. Finne, J. Immunol. Methods, 2004,
295, 149.
15 S. Mehta, M. Gilbert, W. W. Wakarchuk and D. M. Whitfield, Org.
Lett., 2000, 2, 751.
free glycosyl donor avoids problems of radiation and substrate 16 (a) H. J. Lee, L. L. Lairson, J. R. Rich, E. Lameignere,
W. W. Wakarchuk, S. G. Withers and N. C. J. Strynadka, J. Biol.
Chem., 2011, 286, 35922; (b) H. Yu, J. Cheng, L. Ding, Z. Khedri,
Y. Chen, S. Chin, K. Lau, V. K. Tiwari and X. Chen, J. Am. Chem. Soc.,
specificity; (ii) visual detection of enzymatic activity is possible
in a one-step, highly specific assay; (iii) the enzyme activity can
be detected directly from cell lysates, facilitating future screen-
ing of directed evolution libraries, and (iv) the screen can be
automated and optimized for one-well, one-colony/mutant
2009, 131, 18467.
17 Y.-Y. Chien, M.-D. Jan, A. K. Adak, H.-C. Tzeng, Y.-P. Lin, Y.-J. Chen,
K.-T. Wang, C.-T. Chen, C.-C. Chen and C.-C. Lin, ChemBioChem,
2008, 9, 1100.
high-throughput analysis. We expect that this new methodol- 18 X. Liu, M. Atwater, J. Wang and Q. Huo, Colloids Surf., B, 2007, 58, 3.
19 K. Stummeyer, A. Dickmanns, M. Mu¨hlenhoff, R. Gerardy-Schahn
ogy will play a pivotal role in the development of inhibitors and
and R. Ficner, Nat. Struct. Mol. Biol., 2005, 12, 90.
improved mutants of PST and will provide inspiration for
20 T. J. Morley, L. M. Willis, C. Whitfield, W. W. Wakarchuk and
similar assays of other bond-forming enzymes.
S. G. Withers, J. Biol. Chem., 2009, 284, 17404.
c
10168 Chem. Commun., 2013, 49, 10166--10168
This journal is The Royal Society of Chemistry 2013