Organic Letters
Letter
(9) Other activated acids (such as anhydrides or esters) have also
been utilized for the Claisen Condensation reaction. See Supporting
Information for details.
AUTHOR INFORMATION
Corresponding Author
■
(10) The use of other lower boiling solvents, such as MeOH,
generally led to lower yields and conversion of the enamine. t-BuOH
and EtOH afforded the cleanest and best yield for the enamine
formation.
(11) The observation of downfield chemical shifts of hydrogen
bonded N−H protons on similar substrates have previously been
reported; see: (a) Du, Y.; Liu, R.; Linn, G.; Zhao, K. Org. Lett. 2006,
Present Address
§Pfizer, Inc., 610 Main St., Cambridge, MA 02412.
Notes
The authors declare no competing financial interest.
26, 5919. (b) Casarrubios, L.; Per
J. L. J. Org. Chem. 1996, 61, 8358.
́
ez, J. A.; Brookhart, M.; Templeton,
ACKNOWLEDGMENTS
■
(12) While enamines 7, 10, and 13 were isolated as single isomers,
several enamines generated within this manuscript were isolated as
mixtures of Z- versus E-isomers. The mixtures Z- versus E-enamines
proved to be competent substrates in the Pd-mediated cyclization. See
Supporting Information for examples.
(13) For references on the use of diakylbiaryl phosphine ligands in
Pd-catalyzed C−N bond formations, see (a) Surry, D. S.; Buchwald, S.
L. Chem. Sci. 2011, 2, 27. (b) Maiti, D.; Fors, B. P.; Henderson, J. L.;
Nakamura, Y.; Buchwald, S. L. Chem. Sci. 2011, 2, 57. (c) Fors, B. P.;
Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 15914. (d) Harris, M. C.;
Huang, X.; Buchwald, S. L. Org. Lett. 2002, 4, 2885.
(14) For references on the use of bulky electron-rich phosphine
ligands in Pd-catalyzed C−N bond formations, see: (a) Hartwig, J. F.;
Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M.
J. Org. Chem. 1999, 64, 5575. (b) Nishiyama, M.; Yamamoto, T.; Koie,
Y. Tetrahedron Lett. 1998, 39, 617. (c) Stambuli, J. P.; Kuwano, R.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2002, 41, 4746.
(15) (a) Klingensmith, L. M.; Streiter, E. R.; Barder, T. E.; Buchwald,
S. L. Organometallics 2006, 25, 82. (b) Michele, H. C.; Geis, O.;
Buchwald, S. L. J. Org. Chem. 1999, 64, 6019. (c) Yang, B. H.;
Buchwald, S. L. Org. Lett. 1999, 1, 35.
This manuscript is dedicated to Professor A. R. Chamberlin
(University of California, Irvine) on the occasion of his 65th
birthday. We would like to thank Dr. Jin Hong and Jake Zhao
from Custom NMR Services for assistance in acquisition of all
NMR spectra. We also acknowledge WuXi AppTech for
preparation of intermediates 6 and 30 on 100 g scales and for
chiral analysis of sample(s) via SFC.
REFERENCES
■
(1) Rodrigues de Sa
́
Alves, F.; Barreiro, E. J.; Fraga, C. A. M. Mini-
Rev. Med. Chem. 2009, 9, 782.
(2) For selected reviews on the syntheses of indoles, see: (a) Cacchi,
S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215. (b) Cacchi, S.; Fabrizi, G.
Chem. Rev. 2005, 105, 2873. (c) Humphrey, G. R.; Kuethe, J. T. Chem.
Rev. 2006, 106, 2875. (d) Sundberg, R. J. Indoles; Academic Press:
London, 1996; p 175. (e) Taber, D. F.; Tirunahari, R. K. Tetrahedron
2011, 67, 7195. (f) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000,
1045. (g) Vicente, R. Org. Biomol. Chem. 2011, 19, 6469. (h) Inman,
M.; Moody, C. J. Chem. Sci. 2013, 4, 29.
(3) Our initial attempts to functionalize the relatively non-
nucleophilic indole N−H group via direct alkylation, thereby varying
the N-substituent, proved to be problematic (not shown). As such, we
were prompted to seek alternative synthetic strategies to achieve this
goal.
(4) For examples of related Pd-catalyzed C−N bond syntheses of
indoles, see: (a) Yamazaki, K.; Nakamura, Y.; Kondo, Y. J. Org. Chem.
2003, 68, 6011. (b) Yamazaki, K.; Nakamura, Y.; K, Y. J. Chem. Soc.,
Perkin Trans. 1 2002, 2137. (c) Kim, J. H.; Lee, S.-g. Synthesis 2012,
44, 1464. (d) Brown, J. Tetrahedron Lett. 2000, 41, 1623. (e) Kim, J.
H.; Lee, S.-g. Org. Lett. 2011, 13, 1350. (f) Willis, M. C.; Brace, G. N.;
Holmes, I. P. Angew. Chem., Int. Ed. 2005, 39, 2501. (g) Fletcher, A. J.;
Bax, M. N.; Willis, M. C. Chem. Commun. 2007, 4764. (h) Willis, M.
C.; Brace, G. N.; Findlay, T. J. K.; Holmes, I. P. Adv. Synth. Catal.
2006, 348, 851. (i) Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew.
Chem., Int. Ed. 2003, 42, 3042. (j) Barluenga, F.; Jimen
Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 1529.
(k) Barluenga, F.; Jimenez-Aquino, A.; Valdes, C.; Aznar, F. J. Am.
Chem. Soc. 2009, 131, 4031. (l) Barluenga, F.; Jimenez-Aquino, A.;
Valdes
(16) In our hands, addition of exogenous amounts of RuPhos ligand
afforded more reproducible results for the indole formation.
(17) Our attempts to condense tert-butylamine or 1-adamantlyamine
with β-keto ester 6 failed to deliver the corresponding tert-butyl or
adamantyl enamine for Pd-catalyzed cyclization. This failure in
enamine formation was attributed to considerably attenuated
nucleophilicity of these amines and an increase in the steric hindrance
in the substrates.
(18) (a)
Chiral amine 30 was synthesized according to the
procedure outlined by: Albrecht, B. K.; Audia, J. E.; Cook, A. S.;
Dakin, L. A.; Duplessis, M.; Gehling, V. S.; Harmange, J.-C.;
Nasveschuk, C. G.; Vaswani, R. G. PCT Int. Appl. (2013), WO
2013120104 A2 Aug 15, 2013. (b) Chiral amine 30 was resolved
according to the procedure outlined by: Mortimore, M.; Young, S. C.;
Everitt, S. R. L.; Knegtel, R.; Pinder, J. L.; Rutherford, A. P.; Durrant,
S.; Brenchley, G.; Charrier, J. D.; O’Donnell, M. PCT Int. Appl.
(2008), WO 2008079346 A1 Jul 03, 2008.
́
ez-Aquino, A.;
́
́
́
́
́
, C.; Aznar, F. Chem.Eur. J. 2010, 16, 11707.
(5) For reviews on the C−N bond arylation, see: (a) Bariwalab, J.;
Van der Eycken, E. Chem. Soc. Rev. 2013, 42, 9283. (b) Fischer, C.;
Koenig, B. Beilstein J. Org. Chem. 2011, 7, 59. (c) Wolfe, J. P.; Wagaw,
S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
(6) For references on the construction of indoles via Fe-catalyzed
intramolecular amination of aryl bromides, see: Melkonyan, F. S.;
Topolyan, A. P.; Karchava, A. V.; Yurovskaya, M. A. Chem. Heterocycl.
Compd. 2010, 46, 1158.
(7) For references on the construction of indoles via Cu-catalyzed
intramolecular amination of aryl bromides, see: (a) Melkonyan, F. S.;
Kuznetsov, D. E.; Yurovskaya, M. A.; Karchava, A. V. RSC Adv. 2013,
3, 8388. (b) Melkonyan, F. S.; Karchava, A. V.; Yurovskaya, M. A. J.
Org. Chem. 2008, 73, 4275. (c) Besandre, R.; Jaimes, M.; May, J. A.
Org. Lett. 2013, 15, 1666.
(8) While the Cu catalyzed reactions offer the advantage of
inexpensive reaction conditions, the transformation is limited by the
use of anhydrous bases (see ref 7c) and aryl bromides (see ref 7a−c).
4117
dx.doi.org/10.1021/ol5018118 | Org. Lett. 2014, 16, 4114−4117