Organometallics
Communication
(TOF50 = 13.9 h−1). The regioselectivity of the reaction was
found to be independent of the catalyst rate and did not vary
significantly between catalysts. In all reactions the spiroketal 8a
was formed as the most favored regioisomer (Table 2).
The dramatic increase in reaction efficiency reported here
using the o-phenylene-linked bimetallic catalyst 3b is rarely
observed in bimetallic catalysis. Our previous best result
obtained with a bpm-ligated dirhodium complex linked by a
1,8-anthracenyl scaffold (Figure 1a, M = Rh) was found to be
only 34 times faster than its monometallic analogue for the
dihydroalkoxylation of 7.8 Complex 3b appears uniquely
structured to facilitate such massive levels of cooperative rate
enhancement. The principles of minimizing conformational
flexibility and intermetallic distance have led to a highly
cooperative system for the addition of OH bonds to alkynes.
We have previously proposed a mechanism for the rhodium-
catalyzed dihydroalkoxylation of 7 which involves attack of the
benzylic alcohol on the π-coordinated alkyne as the first step.11d
A more detailed investigation of how this mechanism applies to
a bimetallic-catalyzed process is ongoing.
D.; Zheng, G.; Chen, W. J. Organomet. Chem. 2005, 690, 1739. (c) Hu,
T.; Tang, L.-M.; Li, X.-F.; Li, Y.-S.; Hu, N.-H. Organometallics 2005,
24, 2628. (d) Champouret, Y. D. M.; Fawcett, J.; Nodes, W. J.; Singh,
K.; Solan, G. A. Inorg. Chem. 2006, 45, 9890. (e) Rodriguez, B. A.;
Delferro, M.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 5902.
(f) Radlauer, M. R.; Day, M. W.; Agapie, T. Organometallics 2012, 31,
2231. (g) Kong, S.; Song, K.; Liang, T.; Guo, C.-Y; Sun, W.-H.;
Redshaw, C. Dalton Trans. 2013, 42, 9176.
(7) [Ti] and [Zr]: (a) Li, H.; Stern, C. L.; Marks, T. J.
Macromolecules 2005, 38, 9015. (b) Li, H.; Marks, T. J. Proc. Natl.
Acad. Sci. U.S.A. 2006, 103, 15295. (c) Guo, N.; Stern, C. L.; Marks, T.
J. J. Am. Chem. Soc. 2008, 130, 2246. (d) Salata, M. R.; Marks, T. J.
Macromolecules 2009, 42, 1920.
(8) Ho, J. H. H.; Choy, S. W. S.; Macgregor, S. A.; Messerle, B. A.
Organometallics 2011, 30, 5978.
(9) A search of the Cambridge Structural Database retrieved 73
compounds containing an intermolecular Rh···Rh distance of 3.325
0.1 Å: Allen, F. H. Acta Crystallogr. 2002, B58, 380.
(10) (a) Mann, K. R.; Gordon, J. G., II; Gray, H. B. J. Am. Chem. Soc.
1975, 97, 3553. (b) Mann, K. R.; Lewis, N. S.; Williams, R. M.; Gray,
H. B.; Gordon, J. G., II Inorg. Chem. 1978, 17, 828.
(11) (a) Elgafi, S.; Field, L. D.; Messerle, B. A. J. Organomet. Chem.
2000, 607, 97. (b) Messerle, B. A.; Vuong, K. Q. Organometallics 2007,
26, 3031. (c) Selvaratnam, S.; Ho, J. H. H.; Huleatt, P. B.; Messerle, B.
A.; Chai, C. L. L. Tetrahedron Lett. 2009, 50, 1125. (d) Ho, J. H. H.;
Hodgson, R.; Wagler, J.; Messerle, B. A. Dalton Trans. 2010, 39, 4062.
(e) Man, B. Y. M.; Bhadbhade, M.; Messerle, B. A. New. J. Chem. 2011,
35, 1730.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, figures, a table, and CIF files giving experimental
procedures for the synthesis of all compounds, the preparation
of catalytic reactions, and crystallographic data for compounds
1b,c and 3c. This material is available free of charge via the
structures reported in this paper have also been deposited with
the Cambridge Crystallographic Data Centre (CCDC) as
supplementary publication nos. 944983−944985.
(12) (a) Togni, A.; Grutzmacher, H. Catalytic Heterofunctionalization;
̈
Wiley-VCH: Weinheim, Germany, 2001. (b) Beller, M.; Seayad, J.;
Tillack, A.; Jiao, H.-J. Angew. Chem., Int. Ed. 2004, 43, 3368.
(c) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(d) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(e) Weiss, C. J.; Marks, T. J. Dalton Trans. 2010, 39, 6576.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the Australian Research Council (ARC)
and the University of New South Wales is gratefully
acknowledged. S.W.S.C. thanks the Australian Government
for an Australian Postgraduate Award (APA).
REFERENCES
■
(1) (a) van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998, 54,
12985. (b) Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349.
(c) Delferro, M.; Marks, T. J. Chem. Rev. 2011, 111, 2450. (d) Park, J.;
Hong, S. Chem. Soc. Rev. 2012, 41, 6931. (e) Bratko, I.; Gom
́
ez, M.
Dalton Trans. 2013, 42, 10664.
(2) [Co]: Vance, D. H.; Czarnik, A. W. J. Am. Chem. Soc. 1993, 115,
12165.
(3) [Cu]: (a) Young, M. J.; Chin, J. J. Am. Chem. Soc. 1995, 117,
10577. (b) Liu, S.; Luo, Z.; Hamilton, A. D. Angew. Chem., Int. Ed.
1997, 36, 2678. (c) Cacciapaglia, R.; Alessandro, C.; Mandolini, L.;
Reinhoudt, D. N.; Salvio, R.; Sartori, A.; Ungaro, R. J. Am. Chem. Soc.
2006, 128, 12322.
(4) [Zn]: (a) Chapman, W. H.; Breslow, R. J. Am. Chem. Soc. 1995,
117, 5462. (b) Yashiro, M.; Ishikubo, A.; Komiyama, M. Chem.
Commun. 1997, 83.
(5) Haak, R. M.; Wezenberg, S. J.; Kleij, A. W. Chem. Commun. 2010,
2713 and references therein.
(6) [Ni]: (a) Tomov, A.; Kurtev, K. J. Mol. Catal. A 1995, 103, 95.
(b) Jie, S.; Zhang, D.; Zhang, T.; Sun, W.-H.; Chen, J.; Ren, Q.; Liu,
4729
dx.doi.org/10.1021/om400613b | Organometallics 2013, 32, 4726−4729