Paper
RSC Advances
Table 4 Comparison of the catalytic activity of the Co3O4/NiO@GQD@SO3H nanocomposite (5 mg) with that of other reported catalysts for the
synthesis chromenpyrimidines (4b)
Entry
Catalyst (conditions)
Time (min)
Conversion efficiency
Yielda (%)
Ref.
1
2
L-proline, 20 mol%, EtOH, reux
Bifunctional thiourea-based
360
240
75
79
83
86
13
14
organocatalyst, 20 mol%, H2O, reux
Sulfamic acid, 30 mol%, (EtOH : H2O:
1 : 1), ultrasound irradiation
3
4
30
80
77
82
85
90
11
Co3O4/NiO@GQD@SO3H
This work
nanocomposite (5 mg, EtOH, reux)
a
Isolated yield.
10H), 9.11 (s, 1H, OH), 14.03 (s, 1H, OH); 13C NMR (100 MHz, (s, 3H), 3.38 (s, 3H), 5.57 (s, 1H), 7.02–7.85 (m, 10H), 13.99 (s,
DMSO-d6) d: 28.67, 31.02, 36.40, 87.35, 104.98, 113.16, 113.69, 1H, OH); 13C NMR (100 MHz, DMSO-d6) d: 23.8, 28.1, 30.3, 32.9,
116.58, 116.59, 117.48, 124.23, 124.81, 124.83, 129.47, 132.93, 35.6, 87.1, 104.4, 115.8, 116.9, 123.7, 123.9, 125.8, 126.1, 131.9,
140.27, 150.51, 152.36, 155.52, 157.72, 164.48, 166.23. Anal. 135.2, 145.5, 149.9, 151.9, 155.0, 163.8, 164.1, 168.3; anal. calcd
calcd for C22H19N3O6: C, 62.70%; H, 4.54%; N, 9.97%; found C, for C25H25N3O5: C, 67.10%; H, 5.63%; N, 9.39%; found C,
62.82%; H, 4.62%; N, 9.98%.
67.19%; H, 5.75%; N, 9.45%.
6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)
6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)
(4-methylphenyl) methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)- (2-bromophenyl) methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-
ꢁ
dione (4i). White solid; m.p. 202–204 C; IR (KBr): 3411, 3212, dione (4m). White solid; m.p. 210–212 ꢁC; IR (KBr): 3402, 3210,
2922, 1697, 1665, 1618, 1569, 1353, 764 cmꢀ1 1H NMR (400 2925, 1676, 1665, 1618, 1489, 1447, 765 cmꢀ1 1H NMR (400
;
;
MHz, DMSO-d6) d: 2.24 (s, 3H), 3.14 (s, 3H), 3.37 (s, 3H), 5.57 (s, MHz, DMSO-d6) d: 3.12 (s, 3H), 3.35 (s, 3H), 5.57 (s, 1H), 7.12–
1H), 6.96–7.85 (m, 10H), 13.98 (s, 1H, OH); 13C NMR (100 MHz, 7.86 (m, 10H), 13.96 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6)
DMSO-d6) d: 20.60, 28.32, 30.64, 35.74, 87.30, 104.72, 116.25, d: 28.74, 31.16, 36.10, 86.94, 104.92, 116.63, 117.29, 124.25,
123.72, 124.17, 124.42, 126.37, 128.82, 132.58, 134.74, 135.13, 124.82, 126.35, 127.52, 128.40, 128.92, 130.75, 132.96, 138.05,
150.18, 152.02, 155.12, 164.15, 165.93, 167.75; anal. calcd for 150.56, 152.47, 155.65, 164.22, 164.55, 166.14; anal. calcd for
C
23H21N3O5: C, 65.86%; H, 5.05%; N, 10.02%; found C, 65.92%;
C22H18BrN3O5: C, 54.56%; H, 3.75%; N, 8.68%. Found: C,
H, 5.15%; N, 10.08%.
54.65%; H, 3.86%; N, 8.77%.
6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)
6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)
(3-methylphenyl) methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)- (3-bromophenyl) methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-
ꢁ
dione (4j). White solid; m.p. 200–202 C; IR (KBr): 3403, 3229, dione (4n). White solid; m.p. 245–247 ꢁC; IR (KBr): 3405, 3210,
2923, 1699, 1695, 1445, 758 cmꢀ1; 1H NMR (400 MHz, DMSO-d6) 2924, 1673, 1665, 1617, 1489, 1445, 764 cmꢀ1 1H NMR (400
;
d: 2.21 (s, 3H), 3.15 (s, 3H), 3.38 (s, 3H), 5.59 (s, 1H), 6.92–7.86 MHz, DMSO-d6) d: 3.13 (s, 3H), 3.35 (s, 3H), 5.59 (s, 1H), 7.10–
(m, 10H), 13.97 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) d: 7.89 (m, 10H), 13.98 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6)
21.63, 28.66, 30.98, 36.37, 87.34, 105.11, 116.58, 117.37, 123.91, d: 28.74, 31.18, 36.17, 86.95, 104.94, 116.62, 117.31, 124.26,
124.18, 124.77, 126.87, 127.29, 128.42, 132.85, 137.50, 138.66, 124.85, 125.33, 126.54, 128.42, 128.94, 130.72, 132.90, 138.07,
150.50, 152.37, 155.52, 164.26, 164.54, 166.25; anal. calcd for 150.52, 152.43, 155.64, 164.22, 164.50, 166.12; anal. calcd for
C
23H21N3O5: C, 65.86%; H, 5.05%; N, 10.02%; found C, 65.96%;
C22H18BrN3O5: C, 54.56%; H, 3.75%; N, 8.68%. Found: C,
H, 5.18%; N, 10.12%.
54.65%; H, 3.87%; N, 8.79%.
6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)
(4-bromophenyl) methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-
ꢁ
4. Conclusions
dione (4k). White solid; m.p. 236–238 C; IR (KBr): 3404, 3212,
2921, 1675, 1663, 1616, 1488, 1446, 761 cmꢀ1 1H NMR (400
;
In conclusion, we reported an efficient method for the synthesis
of chromenpyrimidines using the Co3O4/NiO@GQD@SO3H
nanocomposite as a superior catalyst under reux conditions.
The new catalyst was characterized via FT-IR, SEM, XRD, EDS,
TGA, BET and VSM. The current method provides obvious
advantages, including environmental friendliness, short reac-
tion time, reusability of the catalyst, low catalyst loading and
simple workup procedure.
MHz, DMSO-d6) d: 3.13 (s, 3H), 3.37 (s, 3H), 5.58 (s, 1H), 7.11–
7.84 (m, 10H), 13.97 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6)
d: 28.75, 31.17, 36.19, 86.95, 104.93, 116.63, 117.34, 124.22,
124.85, 128.40, 128.93, 130.79, 132.94, 138.08, 150.55, 152.42,
155.67, 164.28, 164.54, 166.16; anal. calcd for C22H18BrN3O5: C,
54.56%; H, 3.75%; N, 8.68%. Found: C, 54.62%; H, 3.83%; N,
8.75%.
6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)
(4-isopropylphenyl)
methyl)-1,3-dimethylpyrimidine-
ꢁ
2,4(1H,3H)-dione (4l). White solid; m.p. 257–259 C; IR (KBr):
Conflicts of interest
;
3463, 3230, 2958, 1695, 1671, 1616, 1569, 1446, 1343, 762 cmꢀ1
1H NMR (400 MHz, DMSO-d6) d: 1.15 (s, 6H), 2.77 (m, 1H), 3.15
There are no conicts to declare.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 37344–37354 | 37353