Edge Article
Chemical Science
performed in high yields with low palladium loadings, and
generates potent aroylating reagents with negligible impurities
upon simple ltration. These products react with a variety of
in Process Chemistry, Springer Berlin Heidelberg, 2004, vol.
6, pp. 263–283; (c) C. E. Garrett and K. Prasad, Adv. Synth.
Catal., 2004, 346, 889.
nucleophiles under mild conditions, including those with 10 (a) D. A. Watson, X. Fan and S. L. Buchwald, J. Org. Chem.,
functional groups that can be incompatible under standard
carbonylative conditions or are poorly nucleophilic. These
2008, 73, 7096; (b) T. Ueda, H. Konishi and K. Manabe,
Org. Lett., 2012, 14, 5370.
features suggest the potential general utility of aroyl–DMAP 11 M. N. Burhardt, R. H. Taaning and T. Skrydstrup, Org. Lett.,
formation in carbonylation chemistry, especially with prob- 2013, 15, 948.
lematic substrates. Experiments directed towards exploiting 12 (a) R. Lou, M. vanAlstine, X. Sun and M. P. Wentland,
this reactivity in new classes of carbonylation reactions are
currently in progress.
Tetrahedron Lett., 2003, 44, 2477; (b) A. M. de Almeida,
T. L. Andersen, A. T. Lindhardt, M. V. de Almeida and
T. Skrydstrup, J. Org. Chem., 2015, 80, 1920.
13 Aroyl azides (a) F. M. Miloserdov and V. V. Grushin, Angew.
Chem., Int. Ed., 2012, 51, 3668, Acyl uorides (b) T. Okano,
N. Harada and J. Kiji, Bull. Chem. Soc. Jpn., 1992, 65, 1741;
(c) T. Sakakura, M. Chaisupakitsin, T. Hayashi and
M. Tanaka, J. Organomet. Chem., 1987, 334, 205; (d)
T. Ueda, H. Konishi and K. Manabe, Org. Lett., 2013, 15,
Acknowledgements
We thank NSERC, the Canadian Foundation for Innovation
(CFI), and the FQRNT supported Centre for Green Chemistry
and Catalysis for funding this research.
5370,
Weinreb
amides
(e)
J.
R.
Martinelli,
Notes and references
D. M. M. Freckmann and S. L. Buchwald, Org. Lett., 2006,
8, 4843, N-acyl pyrroles (f) S. Ho, G. Bondarenko, D. Rosa,
B. Dragisic and A. Orellana, J. Org. Chem., 2012, 77, 2008.
1 (a) G. A. Olah, Friedel–Cras and Related Reactions,
Interscience Publishers, New York, 1963; (b) G. A. Olah,
Friedel–Cras Chemistry, John Wiley-Interscience, New 14 (a) J. S. Quesnel and B. A. Arndtsen, J. Am. Chem. Soc., 2013,
York, 1973.
135, 16841; (b) J. S. Quesnel, L. V. Kayser, A. Fabrikant and
B. A. Arndtsen, Chem.–Eur. J., 2015, 20, 9550.
2 C. A. G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61,
10827.
15 For acid chloride syntheses from non-aryl halide
electrophiles: (a) J. Tsuji, M. Morikawa and J. Kiji, J. Am.
Chem. Soc., 1964, 86, 4851; (b) W. T. Dent, R. Long and
G. H. J. Whiteld, J. Chem. Soc., 1964, 1588; (c)
M. C. Bonnet, N. Carmona and I. Tkatchenko, J. Mol.
Catal. A: Chem., 1999, 143, 181; (d) T. A. Cernak and
T. H. Lambert, J. Am. Chem. Soc., 2009, 131, 3124.
3 (a) I. J. Turchi and M. J. S. Dewar, Chem. Rev., 1975, 75, 389;
(b) J. B. Wright, Chem. Rev., 1951, 48, 397; (c) N. S. Isaacs,
Chem. Soc. Rev., 1976, 5, 181; (d) G. W. Gribble, in
Mesoionic Ring Systems from the Chemistry of Heterocyclic
Compounds, ed. A. Padwa and W. H. Pearson, Wiley-Vch,
2002, vol 59, pp. 682–753; (e) D. M. D'Souza and
¨
¨
¨
T. J. J. Muller, Chem. Soc. Rev., 2007, 36, 1095.
16 (a) G. Hoe, W. Steglich and H. Vorbruggen, Angew. Chem.,
Int. Ed., 1978, 17, 569; (b) E. F. V. Scriven, Chem. Soc. Rev.,
1983, 12, 129; (c) U. Ragnarsson and L. Grehn, Acc. Chem.
Res., 1998, 31, 494; (d) D. J. Berry, C. V. Digiovanna,
S. S. Metrick and R. Murugan, ARKIVOC, 2001, 2, 944; (e)
A. C. Spivey and S. Arseniyadis, Angew. Chem., Int. Ed.,
2004, 43, 5436; (f) N. de Rycke, F. Couty and O. R. P. David,
Chem.–Eur. J., 2011, 17, 12852.
4 (a) H. H. Yang, Kevlar Aramid Fiber, J. Wiley, Chichester,
1993; (b) H. G. Chae and S. J. Kumar, Appl. Polym. Sci.,
2006, 100, 791.
5 R. K. Dieter, Tetrahedron, 1999, 55, 4177.
6 (a) D. J. C. Constable, P. J. Dunn, J. D. Hayler,
G. R. Humphrey, J. J. L. Leazer, R. J. Linderman, K. Lorenz,
J. Manley, B. A. Pearlman, A. Wells, A. Zaks and
T. Y. Zhang, Green Chem., 2007, 9, 411; (b) E. Valeur and 17 (a) E. Guibe-Jampel, G. Le Corre and M. Wakselman,
M. Bradley, Chem. Soc. Rev., 2009, 38, 606; (c) C. L. Allen
and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405; (d)
V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471.
7 (a) A. Schoenberg, I. Bartoletti and R. F. Heck, J. Org. Chem.,
1974, 39, 3318; (b) A. Schoenberg and R. F. Heck, J. Org.
Chem., 1974, 39, 3327.
Tetrahedron Lett., 1979, 20, 1157; (b) J. A. King and
G. L. Bryant, J. Org. Chem., 1992, 57, 5136; (c) M. S. Wolfe,
Synth. Commun., 1997, 27, 2975; (d) R. Weiss, M. Bess,
S. M. Huber and F. W. Heinemann, J. Am. Chem. Soc.,
2008, 130, 4610.
18 W. Fang, H. Zhu, Q. Deng, S. Liu, X. Liu, Y. Shen and T. Tu,
Synthesis, 2014, 46, 1689.
8 For reviews see: (a) H. Neumann and M. Beller, Angew.
Chem., Int. Ed., 2009, 48, 4114; (b) C. F. J. Barnard, 19 For ease of reaction set-up and manipulation, (PtBu3)2Pd was
Organometallics, 2008, 27, 5402; (c) R. Grigg and
S. P. Mutton, Tetrahedron, 2010, 66, 5515; (d)
employed as a catalyst, although the combination of
Pd2dba3/PtBu3 (Table 1) can also be used. In addition, the
reaction can be performed on the bench using standard
Schlenk techniques with only slightly diminished yields
(using Pd2dba3/tBu3PHCl as the catalyst precursor). See
ESI† for details.
¨
A. Brennfuhrer, X.-F. Wu, H. Neumann and M. Beller,
Chem. Soc. Rev., 2011, 40, 4986.
9 For select examples and reviews see: (a) J. Magano, in
Transition Metal-Catalyzed Couplings in Process Chemistry,
Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 313–355;
(b) J. Bien, G. Lane and M. Oberholzer, in Organometallics
This journal is © The Royal Society of Chemistry 2015
Chem. Sci.