ChemComm
Communication
D. Cahard, Angew. Chem., Int. Ed., 2012, 51, 5048; (e) A. Studer,
Angew. Chem., Int. Ed., 2012, 51, 8950.
2 (a) K. Mu¨ller, C. Faeh and F. Diederich, Science, 2007, 317, 1881;
(b) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc.
Rev., 2008, 37, 320.
3 For reviews on trifluoromethylation of carbonyl compounds, see:
(a) G. K. S. Prakash and F. Wang, in Organic Chemistry – Break-
throughs and Perspectives, ed. K. Ding and L.-X. Dai, Wiley-VCH,
Weinheim, 2012, ch. 12, pp. 413–476; (b) N. Shibata, S. Mizuta and
H. Kawai, Tetrahedron: Asymmetry, 2008, 19, 2633.
Scheme 3 Copper-catalyzed trifluoromethylation of (R)-1m with trifluoromethyl-
trimethylsilane.
4 For examples of enantioselective a-trifluoromethylation of alde-
hydes, see: (a) D. A. Nagib, M. E. Scott and D. W. C. MacMillan,
J. Am. Chem. Soc., 2009, 131, 10875; (b) A. E. Allen and D. W. C.
MacMillan, J. Am. Chem. Soc., 2010, 132, 4986.
5 (a) A. T. Parsons and S. L. Buchwald, Angew. Chem., Int. Ed., 2011,
50, 9120; (b) J. Xu, Y. Fu, D.-F. Luo, Y.-Y. Jiang, B. Xiao, Z.-J. Liu,
T.-J. Gong and L. Liu, J. Am. Chem. Soc., 2011, 133, 15300;
(c) X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang and J. Wang,
J. Am. Chem. Soc., 2011, 133, 16410; (d) R. Shimizu, H. Egami,
Y. Hamashima and M. Sodeoka, Angew. Chem., Int. Ed., 2012,
51, 4577; (e) L. Chu and F.-L. Qing, Org. Lett., 2012, 14, 2106.
6 For recent examples, see: (a) P. G. Janson, I. Ghoneim,
(Table 3, entries 2 and 3). The reactions of 2-chloro-4-
(4-methoxyphenyl)but-3-yne (1p) at lower temperature (40 1C)
gave the good result (Table 3, entry 4). Secondary propargylic
chloride bearing no conjugated aromatic ring (1q) was also
applicable to this reaction system, giving the corresponding
trifluoromethylated allene (3q) in 71% yield (Table 3, entry 5).
Only a small amount (8%) of the corresponding trifluoromethyl-
ated allene was obtained from the reaction of 1-chloro-1-phenyl-
prop-2-yne under the same reaction conditions.
In order to obtain information on the reaction pathway, we
investigated the reaction of an optically active secondary pro-
pargylic chloride. Treatment of (R)-1m (94% ee) with 1.5 equiv.
of CF3SiMe3 under the same reaction conditions afforded 3m in
83% yield with a complete loss of optical purity (Scheme 3).
This result indicates that our catalytic reaction proceeds not via
an anti-SN20 pathway14 but via other pathways involving cationic
propargyl/allenyl–copper complexes as reactive intermediates.7,9c
In summary, we have found the copper-catalyzed nucleophilic
trifluoromethylation of propargylic chlorides with trifluoro-
methyltrimethylsilane. In our system, reactions of primary pro-
pargylic chlorides (1) afford the corresponding propargylic
trifluoromethylated products (2), while the trifluoromethylated
allenes (3) can be obtained from reactions of secondary pro-
pargylic chlorides. This is the first successful example of catalytic
trifluoromethylation of propargylic halides. We believe that the
method described here provides an efficient strategy for the
synthesis of CF3-containing compounds at the propargylic and
allenylic positions, which are useful building blocks in pharma-
ceuticals.12c,15 Further work is currently in progress to apply this
strategy to the enantioselective reactions and to clarify the
precise reaction mechanism.
´
N. O. IIchenko and K. J. Szabo, Org. Lett., 2012, 14, 2882;
(b) R. Zhu and S. L. Buchwald, J. Am. Chem. Soc., 2012, 134, 12462;
(c) Y. Li and A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8221;
(d) Y. Yasu, T. Koike and M. Akita, Angew. Chem., Int. Ed., 2012,
51, 9567.
7 Y. Miyake, S. Ota and Y. Nishibayashi, Chem.–Eur. J., 2012,
18, 13255.
8 For examples of nucleophilic trifluoromethylation of allylic halides
using a stoichiometric amount of copper salts, see: (a) Y. Kobayashi,
K. Yamamoto and I. Kumadaki, Tetrahedron Lett., 1979, 20, 4071;
´
(b) J.-P. Bouillon, C. Maliverney, R. Merenyi and H. G. Viehe, J. Chem.
Soc., Perkin Trans. 1, 1991, 2147; (c) H. Urata and T. Fuchikami,
Tetrahedron Lett., 1991, 32, 91; (d) D.-B. Su, J.-X. Duan and Q.-Y.
Chen, Tetrahedron Lett., 1991, 32, 7689; (e) Q.-Y. Chen and
J.-X. Duan, J. Chem. Soc., Chem. Commun., 1993, 1389; ( f ) J. Kim
and J. M. Shreeve, Org. Biomol. Chem., 2004, 2, 2728.
9 For recent reviews on propargylic substitution reactions, see:
(a) G. W. Kabalka and M. L. Yao, Curr. Org. Synth., 2008, 5, 28;
(b) N. Ljungdahl and N. Kann, Angew. Chem., Int. Ed., 2009, 48,
642; (c) Y. Miyake, S. Uemura and Y. Nishibayashi, ChemCatChem,
2009, 1, 342; (d) R. J. Detz, H. Hiemstra and J. H. van Maarseveen,
Eur. J. Org. Chem., 2009, 6263; (e) C.-H. Ding and X.-L. Hou,
Chem. Rev., 2011, 111, 1914; ( f ) Y. Nishibayashi, Synthesis,
2012, 489.
10 For examples of ruthenium-catalyzed reactions, see: (a) K. Fukamizu,
Y. Miyake and Y. Nishibayashi, J. Am. Chem. Soc., 2008, 130, 10498;
(b) M. Ikeda, Y. Miyake and Y. Nishibayashi, Angew. Chem., Int. Ed.,
2010, 49, 7289; (c) M. Ikeda, Y. Miyake and Y. Nishibayashi,
Chem.–Eur. J., 2012, 18, 3321 and references therein.
11 For examples of copper-catalyzed reactions, see: (a) G. Hattori,
H. Matsuzawa, Y. Miyake and Y. Nishibayashi, Angew. Chem., Int.
Ed., 2008, 47, 3781; (b) G. Hattori, K. Sakata, H. Matsuzawa,
Y. Tanabe, Y. Miyake and Y. Nishibayashi, J. Am. Chem. Soc., 2010,
132, 10592; (c) A. Yoshida, G. Hattori, Y. Miyake and Y. Nishibayashi,
Org. Lett., 2011, 13, 2460 and references therein.
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas ‘‘Advanced Molecular Transfor-
mations by Organocatalyst’’ from the Ministry of Education,
Culture, Sports, Science and Technology, Japan and the Fund-
ing Program for Next Generation World-Leading Researchers
(GR025). We thank Dr Shingo Ito and Prof. Dr Kyoko Nozaki at
The University of Tokyo for measurement of 19F NMR.
12 (a) D. J. Burton, G. A. Hartgraves and J. Hsu, Tetrahedron Lett., 1990,
31, 3699; (b) H. Kawai, T. Furukawa, Y. Nomura, E. Tokunaga and
´
N. Shibata, Org. Lett., 2011, 13, 3596; (c) T. S. N. Zhao and K. J. Szabo,
Org. Lett., 2012, 14, 3966.
13 (a) G. K. S. Prakash and A. K. Yudin, Chem. Rev., 1997, 97, 757;
(b) R. P. Singh and J. M. Shreeve, Tetrahedron, 2000, 56, 7613.
14 For recent examples of copper-catalyzed reactions, see: (a) C. Zhong,
Y. Sasaki, H. Ito and M. Sawamura, Chem. Commun., 2009, 5850;
(b) H. Ohmiya, U. Yokobori, Y. Makida and M. Sawamura, Org. Lett.,
2011, 13, 6312; (c) M. Yang, N. Yokokawa, H. Ohmiya and
M. Sawamura, Org. Lett., 2012, 14, 816.
Notes and references
1 For recent reviews on trifluoromethylation, see: (a) J.-A. Ma and
D. Cahard, Chem. Rev., 2008, 108, PR1; (b) O. A. Tomashenko and
V. V. Grushin, Chem. Rev., 2011, 111, 4475; (c) T. Furuya, A. S. Kamlet 15 Y. Matsuya, D. Ihara, M. Fukuchi, D. Honma, K. Itoh, A. Tabuchi,
and T. Ritter, Nature, 2011, 473, 470; (d) T. Besset, C. Schneider and
H. Nemoto and M. Tsuda, Bioorg. Med. Chem., 2012, 20, 2564.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7809--7811 7811