Journal of the American Chemical Society
Communication
(13) For our previous reports on dehydrogenation of alcohols:
(a) Fujita, K.; Tanino, N.; Yamaguchi, R. Org. Lett. 2007, 9, 109.
(b) Fujita, K.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13,
2278. (c) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc. 2012,
134, 3643. (d) Kawahara, R.; Fujita, K.; Yamaguchi, R. Angew. Chem., Int.
Ed. 2012, 51, 12790.
(14) Evolution of hydrogen was confirmed by dual reactions. See
Supporting Information.
(15) The perdehydrogenation of decalin by using heterogeneous
catalysts has been generally carried out at >200 °C. Biniwalea, R. B.;
Rayalua, S.; Devottaa, S.; Ichikawa, M. Intl. J. Hydrogen Energy 2008, 33,
360 and references cited therein.
(16) Dehydrogenation of decahydro-1,5-naphthyridine and 2-methyl-
piperidine under conditions similar to those previously mentioned gave
trace amounts of perdehydrogenated products (<4%).
(17) The structures of 3a and 3b were determined by X-ray analyses.
See Supporting Information.
ACKNOWLEDGMENTS
■
This work was partially supported by KAKENHI (No. 22550098).
We thank Takuya Aikawa for his technical assistance.
REFERENCES
■
(1) For recent representative reviews on hydrogen as a sustainable
energy carrier: (a) Sartbaeva, A.; Kuznetsov, V. L; Wells, S. A.; Edwards,
P. P. Energy Environ. Sci. 2008, 1, 79. (b) Armaroli, N.; Balzani, V.
ChemSusChem 2011, 4, 21 and references cited therein.
(2) For recent representative reviews of organic hydride hydrogen
storage systems: (a) Eberle, U.; Felderhoff, M.; Schuth, F. Angew. Chem.,
Int. Ed. 2009, 48, 6608. (b) Makowski, P.; Thomas, A.; Kuhn, P.;
Goettmann, P. Energy Environ. Sci. 2009, 2, 480. (c) Teichmann, D.; Arlt,
W.; Wasserscheid, P.; Freymann, R. Energy Environ. Sci. 2011, 4, 2767.
(d) Fukuzumi, S.; Suenobu, T. Dalton Trans. 2013, 42, 18.
(3) (a) Crabtree, R. H. Energy Environ. Sci. 2008, 1, 134 and references
cited therein. (b) Jessop, P. Nat. Chem. 2009, 1, 350.
(4) For a recent patent: Pez, G. P.; Scott, A. R.; Cooper, A. C.; Cheng,
H.; Wilhelm, F. C.; Abdourazak, A. H. U.S. Patent 7351395 and
7429372, 2008, and references cited therein.
(5) (a) Moores, A.; Poyatos, M.; Luo, Y.; Crabtree, R. H. New J. Chem.
2006, 30, 1675. (b) Clot, E.; Eisenstein, O.; Crabtree, R. H. Chem.
Commun. 2007, 2231. (c) Cui, Y.; Kwok, S.; Bucholtz, A.; Davis, B.;
Whitney, R. A.; Jessop, P. G. New J. Chem. 2008, 32, 1027. (d) Lu, R.-F.;
̈
(18) See Supporting Information for details.
(19) It should be noted that complexes 6 exhibit much lower catalytic
activity than complexes 2 in the dehydrogenation of alcohols.13d
(20) The perhydrogenation and dehydrogenation were not affected by
the addition of mercury at all, supporting the homogeneous catalytic
reactions. See Supporting Information for details. We thank the referee
for the valuable suggestion.
(21) 1H NMR (toluene-d8) δ 2.00 (15H), −15.59 (4H). See
Supporting Information for details.
Boethius, G.; Wen, S.-H.; Su, Y.; Deng, W.-Q. Chem. Commun. 2009,
1751.
̈
(22) We have observed that the addition of a proton source (for
example, HClO4) facilitates the transfer hydrogenation of quinolines:
Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett.
2004, 45, 3215. See also ref 7g.
(6) After Pez et al. reported the reversible dehydrogenation and
hydrogenation of N-ethyldodecahydrocarbazole and N-ethylcarbazole,4
many reports on this subject mostly using heterogeneous catalysts have
appeared. For a recent representative report: (a) Yang, M.; Han, C.; Ni,
G.; Wu, J.; Cheng, H. Intl. J. Hydrogen Energy 2012, 37, 12839. For the
dehydrogenation: (b) Sotoodeh, F.; Smith, K. J. J. Catal. 2011, 279, 36.
For the hydrogenation: (c) Wan, C.; An, Y.; Chen, F.; Cheng, D.; Wu,
F.; Xu, G. Intl. J. Hydrogen Energy 2013, 38, 7065. For only one report on
the dehydrogenation using homogeneous Ir-pincer complexes:
(d) Wang, Z.; Tonks, I.; Belli, J.; Jensen, C. M. J. Organomet. Chem.
2009, 694, 2854.
(7) For the dehydrogenation and hydrogenation of 1,2,3,4-
tetrahydroquinolines and quinolines: (a) Yamaguchi, R.; Ikeda, C.;
Takahashi, T.; Fujita, K. J. Am. Chem. Soc. 2009, 131, 8410. (b) Li, H.;
Jiang, J.; Lu, G.; Huang, F.; Wang, Z.-X. Organometallics 2011, 30, 3131.
(c) Zhang, X.-B.; Xi, Z. Phys. Chem. Chem. Phys. 2011, 13, 3997.
(d) Mikami, K.; Ebata, K.; Mistudome, T.; Mizugaki, T.; Jitsukawa, K.;
Kaneda, K. Heterocycles 2011, 82, 1371. For the dehydrogenation:
(e) Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Angew. Chem., Int.
Ed. 2013, 52, 6983 and references cited therein. For the hydrogenation:
(f) Dobereiner, G. E.; Nova, A.; Schley, N. D.; Hazari, N.; Miller, S. J.;
Eisenstein, O.; Crabtree, R. H. J. Am. Chem. Soc. 2011, 133, 7547 and
references cited therein. (g) Wu, J.; Barnard, J. H.; Zhang, Y.; Talwar, D.;
Robertson, C. M.; Xiao, J. Chem. Commun. 2013, 49, 7052 and
references cited therein.
(8) For catalytic dehydrogenation of other N-heterocycles: (a) Tsuji,
Y.; Kotachi, S.; Huh, K.-T.; Watanabe, Y. J. Org. Chem. 1990, 55, 580.
(b) Hara, T.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron
Lett. 2003, 44, 6207. (c) Dean, D.; Davis, B.; Jessop, P. G. New J. Chem.
2011, 35, 417. (d) Wang, Z.; Belli, J.; Jensen, C. M. Faraday Discuss.
2011, 151, 297. See also ref 7g.
(9) To the best of our knowledge, there have been only two reports.7a,d
(10) The hydrogen gravimetric capacity of 2-MeTHQ is 2.7 wt % at a
maximum.
(11) All of the perdehydrogenation and perhydrogenation of N-
ethyldodecahydrocarbazole and N-ethylcarbazole have been achieved
by using heterogeneous metal catalyst at high temperatures (>150
°C).4,6a−c It should be noted that the catalytic dehydrogenation of N-
ethyldodecahydrocarbazole using homogeneous PCP pincer iridium
complexes at 200 °C results in the partial dehydrogenation.6d
(12) The hydrogen gravimetric capacity of 3 is 6.0 wt % at a maximum.
The DOE 2015 target is 5.5 wt %.
4832
dx.doi.org/10.1021/ja5001888 | J. Am. Chem. Soc. 2014, 136, 4829−4832