Scheme 1. Synthesis of TI124 and TI125
Figure 1. Chemical structures of oxindole based dyes.
incorporated as the additional acceptors in the DꢀAꢀπꢀA
sensitizers. Such inclusion of electron-deficient groups
was found to improve the photostability of dyes and
adjust their energy levels.5a However, the concern hin-
dering the present DꢀAꢀπꢀA dyes is their relatively
low photovoltages.2a Owing to the easy molecular tai-
loring of organic dyes, enhancement in photovoltage
could be achieved by assisting fast electron injection
through fine-tuning or changing the inserted additional
acceptors in the DꢀAꢀπꢀA dyes.
amide group is located near the anchoring moiety which can
be benefited to accelerate the electron transfer to the TiO2;11
and (3) the inclusion of a nitrogen atom in the heterocyclic
aryl acceptor of the TI125 sensitizer can provide a better
driving force for electron injection (than the TI124 dye) and
thus achieve higher efficiency.12
Scheme 1 depicts the synthesis of two newly designed sen-
sitizers TI124 and TI125. Our synthesis started with the
selective bromination of isatin (1),13 followed by a Wolffꢀ
Herein, we report novel organic sensitizers TI124 and
TI125 (Figure 1) representing the first case of incorpora-
tion of oxindoles as the electron-deficient chromophores in
sensitizers. The oxindoles are natural indole alkaloids and
have abundant use within the pharmaceutical industry.10
However, their applications as sensitizers have not been
explored by other groups. Considering its bicyclic struc-
ture consisting of a six-membered benzene ring fused to a
five-membered amide containing ring, the oxindole could
be a promising candidate in constructing either a DꢀAꢀA
dye or a DꢀAꢀπꢀA sensitizer. In general, the oxindole
based dyes bear beneficial structural characteristics: (1) a
possible chelation of the oxindole to the titanium ions on the
TiO2 surface which can help to increase the electron injection
yield into the photoanode and might suppress the charge
recombination reaction;11 (2) the electron-withdrawing
Kishner reduction to give 5-bromo-2-oxindole (3).14
A
Knoevenagel reaction15 was then used to condense com-
pound 3 with 5-[4-(diphenylamino) phenyl]thiophene-2-
carbaldehyde16 to yield compound 4 as a single Z-isomer.17
One of the reasons for the predominate formation of the
Z-isomer is the electrostatic interaction between the carbo-
nyl oxygen of the amide and the partial positively charged
sulfur of the thiophene.15 Ester 5a and 5b were syn-
thesized by Ullmann-type amination coupling reactions of
compound 4 with 4-bromobenzoic acid methyl ester and
6-bromo-pyridine-3-carboxylic acid methyl ester, respec-
tively. Finally, basic hydrolysis of ester 5a and 5b offered
sensitizers TI124 and TI125, respectively. Detailed synthetic
procedures and characteristic data for all the compounds are
provided in the Supporting Information (SI).
(6) (a) Mao, J.; Guo, F.; Ying, W.; Wu, W.; Li, J.; Hua, J. Chem.;
Asian J. 2012, 7, 982. (b) Cui, Y.; Wu, Y.; Lu, X.; Zhang, X.; Zhou, G.;
Miapeh, F. B.; Zhu, W.; Wang, Z.-S. Chem. Mater. 2011, 23, 4394.
(7) (a) Shi, J.; Chen, J.; Chai, Z.; Wang, H.; Tang, R.; Fan, K.; Wu,
M.; Han, H.; Qin, J.; Peng, T.; Li, Q.; Li, Z. J. Mater. Chem. 2012, 22,
18830. (b) Pei, K.; Wu, Y.; Wu, W.; Zhang, Q.; Chen, B.; Tian, H.; Zhu,
W. Chem.;Eur. J. 2012, 18, 8190. (c) Lu, X.; Feng, Q.; Lan, T.; Zhou,
G.; Wang, Z.-S. Chem. Mater. 2012, 24, 3179. (d) Chang, D.-W.; Lee,
H.-J.; Kim, J.-H.; Park, S.-Y.; Park, S.-M.; Dai, L.; Baek, J.-B. Org.
Lett. 2011, 13, 3880.
The absorption spectra of TI124 and TI125 were inves-
tigated using UVꢀvis absorption spectroscopy (Figure 2).
€
(12) Delcamp, J. H.; Yella, A.; Nazeeruddin, M. K.; Gratzel, M.
Chem. Commun. 2012, 48, 2295.
(13) Chaubey, A. K.; Pandeya, S. N. Int. J. Res. Ayurveda Pharm.
2011, 2, 1763.
(14) Mologni, L.; Rostagno, R.; Brussolo, S.; Knowles, P. P.; Kjaer,
S.; Murray-Rust, J.; Rosso, E.; Zambon, A.; Scapozza, L.; McDonald,
N. Q.; Lucchini, V.; Gambacorti-Passerini, C. Bioorg. Med. Chem. 2010,
18, 1482.
(8) (a) Qu, S.; Wang, B.; Guo, F.; Li, J.; Wu, W.; Kong, C.; Long, Y.;
Hua, J. Dyes Pigm. 2012, 92, 1384. (b) Qu, S.; Wu, W.; Hua, J.; Kong, C.;
Long, Y.; Tian, H. J. Phys. Chem. C 2009, 114, 1343.
(9) (a) Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W. ACS Appl.
Mater. Interfaces 2012, 4, 1822. (b) Feng, Q.; Lu, X.; Zhou, G.; Wang,
Z.-S. Phys. Chem. Chem. Phys. 2012, 14, 7993.
(10) (a) Silva, J. F. M.; Garden, S. J.; Pinto, A. C. J. Braz. Chem. Soc.
2001, 12, 273. (b) Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.;
McMahon, G.; Tang, C. J. Med. Chem. 1998, 41, 2588.
(15) (a) Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon,
G.; Tang, C. J. Med. Chem. 1998, 41, 2588. (b) Rumer, J. W.; Dai, S.-Y.;
Levick, M.; Biniek, L.; Procter, D. J.; McCulloch, I. J. Polym. Sci., Part
A: Polym. Chem. 2013, 51, 1285.
(16) Liu, W.-H.; Wu, I. C.; Lai, C.-H.; Lai, C.-H.; Chou, P.-T.; Li,
Y.-T.; Chen, C.-L.; Hsu, Y.-Y.; Chi, Y. Chem. Commun. 2008, 5152.
(17) Ankati, H.; Akubathini, S. K.; Kamila, S.; Mukherjee, C.;
D’Mello, S. R.; Biehl, E. R. Open Org. Chem. J. 2009, 3, 1.
(11) Mao, J.; He, N.; Ning, Z.; Zhang, Q.; Guo, F.; Chen, L.; Wu, W.;
Hua, J.; Tian, H. Angew. Chem. 2012, 124, 10011.
B
Org. Lett., Vol. XX, No. XX, XXXX