H.-U. Reissig, A. Wiehe et al.
FULL PAPER
Singapore, 2012, vol. 21, p. 377–410; b) V. Maraval, J. E. Ancel,
B. Meunier, J. Catal. 2002, 206, 349–357; c) R. McGuire Jr.,
D. K. Dogutan, T. S. Teets, J. Suntivich, Y. Shao-Horn, D. G.
Nocera, Chem. Sci. 2010, 1, 411–414; d) C.-M. Ho, J.-L.
Zhang, C.-Y. Zhou, O.-Y. Chan, J. J. Yan, F.-Y. Zhang, J.-S.
Huang, C.-M. Che, J. Am. Chem. Soc. 2010, 132, 1886–1894.
a) A. G. Coutsolelos, K. Ladomenou, G. Charalambidis, D.
Daphnomili, in: Handbook of Porphyrin Science, World Scien-
tific Publishing, Singapore, 2014, vol. 34, p. 239–320; b) M.
del Rosario Benites, T. E. Johnson, S. Weghorn, L. Yu, P. D.
Rao, J. R. Diers, S. I. Yang, C. Kirmaier, D. F. Bocian, D.
Holten, S. Lindsey, J. Mater. Chem. 2002, 12, 65–80.
a) T. K. Khan, M. Bröring, S. Mathur, M. Ravikanth, Coord.
Chem. Rev. 2013, 257, 2348–2387; b) M. J. Leonardi, M. R.
Topka, P. H. Dinolfo, Inorg. Chem. 2012, 51, 13114–13122.
a) A. Treibs, F. H. Kreuzer, Justus Liebigs Ann. Chem. 1968,
718, 208–223; for reviews see: b) A. Loudet, K. Burgess, Chem.
Rev. 2007, 107, 4891–4932; c) G. Ulrich, R. Ziessel, A. Harri-
man, Angew. Chem. Int. Ed. 2008, 47, 1184–1201; Angew.
Chem. 2008, 120, 1202–1219; d) N. Boens, V. Leen, W. Dehaen,
Chem. Soc. Rev. 2012, 41, 1130–1172; e) S. P. Singh, T. Gay-
athri, Eur. J. Org. Chem. 2014, 4689–4707; f) Y. Ni, J. Wu,
Org. Biomol. Chem. 2014, 12, 3774–3791; for recent reviews on
dipyrromethanes, see: g) D. T. Gryko, D. Gryko, C.-H. Lee,
Chem. Soc. Rev. 2012, 41, 3780–3789; h) N. A. M. Pereira,
T. M. V. D. Pinho e Melo, Org. Prep. Proced. Int. 2014, 46,
183–213.
over sodium sulfate, the crude product was evaporated to dryness,
purified by column chromatography (n-hexane/acetone, 2:3, v/v)
and recrystallized [CH2Cl2/(MeOH/H2O, 8:2, v/v)] to obtain array
20 (43 mg, 60 %) as pink crystals; m.p. Ͼ 310 °C. 1H NMR
(700 MHz, [D6]acetone): δ = 5.91 (s, 8 H, OCH2), 6.77 (d, J =
4.3 Hz, 8 H, 3,7-Hpyrrole), 7.38 (d, J = 4.3 Hz, 8 H, 2,8-Cpyrrole),
8.20 (s, 8 H, 1,9-Cpyrrole), 8.95 (s, 4 H, Htriazole), 9.21 (s, 8 H, β-
[6]
H
pyrrole) ppm. 13C NMR (176 MHz, [D6]acetone): δ = 67.2 (OCH2),
2
2
104.3 (ArF-Cmeso), 114.0 (t, JC,F = 18.6 Hz), 116.1 (t, JC,F
18.6 Hz, ArF-Cipso), 118.6 (tt,
=
2,3
J
= 12.9, 2.9 Hz, BODIPY-ArF-
C,F
Cpara), 120.2 (3,7-Cpyrrole), 127.7 (C=CHtriazole), 129.2 (5-Cmeso),
131.3 (2,8-Cpyrrole), 132.0 (β-Cpyrrole), 134.7 (4,6-Cpyrrole), 137.4 (t,
[7]
[8]
2,3
2JC,F = 12.5 Hz, porphyrin-ArF-Cpara), 141.72 (dd,
J
= 248.1,
C,F
2,3
15.5 Hz, ArF-Cmeta), 142.37 (dd,
J
= 255.0, 15.6 Hz, ArF-
C,F
2,3
Cmeta), 143.3 (C=CHtriazole), 144.81 (dd,
J
= 250.3, 13.4 Hz,
C,F
2
ArF-Cortho), 146.8 (d, JC,F = 247.2 Hz, ArF-Cortho), 147.4 (1,9-
C
pyrrole), 150.3 (α-Cpyrrole) ppm. 19F NMR (376 MHz, [D6]acetone):
δ = –139.01 to –139.24 (m, 8 F, BODIPY-Ar-Fortho), –141.01 to
–141.31 (m, 8 F, porphyrin-Ar-Fortho), –144.40 (dd, J = 55.8,
27.9 Hz, 8 F, BF2), –147.00 to –147.28 (m, 8 F, BODIPY-Ar-Fmeta),
–157.76 to –158.05 (m, 8 F, porphyrin-Ar-Fmeta) ppm. HRMS (ESI-
TOF): m/z calcd. for C116H44B4F40N24O4NaZn+ [M + Na]+
2727.2900; found 2727.2894. UV/Vis (acetone): λmax (log ε,
Lmol–1 cm–1) = 417 (5.39), 514.5 (4.22) nm. Fluorescence emission
(acetone): λmax = 546, 590, 643 nm at λExcit = 350 and 450 nm.
See ref.[8c] and: S. Suzuki, M. Kozaki, K. Nozaki, K. Okada,
J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 269–
292.
[9]
Acknowledgments
[10]
[11]
a) H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Ur-
ano, Chem. Rev. 2010, 110, 2620–2640; b) R. P. Haugland, in:
The Molecular Probes Handbook, 2010, 57–65.
H. Langhals, O. Krotz, K. Polborn, P. Mayer, Angew. Chem.
Int. Ed. 2005, 44, 2427–2428; Angew. Chem. 2005, 117, 2479–
2480.
Financial support by the Deutsche Forschungsgemeinschaft
(DFG), Graduate School 1582 – Fluorine as a Key Element – and
by the Bundesministeriums für Bildung und Forschung (BMBF)
(EuroNanoMed Project “Target-PDT”, FKZ: 13N11032, Biolitec
Research GmbH) is gratefully acknowledged. Dr. Reinhold Zim-
mer is thanked for helpful discussions during preparation of this
manuscript.
[12]
[13]
L. Gai, J. Mack, H. Liu, Z. Xu, H. Lu, Z. Li, Sens. Actuators
B 2013, 182, 1–6.
a) S. Erten-Ela, M. D. Yilmaz, B. Icli, Y. Dede, S. Icli, E. U.
Akkaya, Org. Lett. 2008, 10, 3299–3302; b) Y. Cakmak, E. U.
Akkaya, Org. Lett. 2009, 11, 85–88.
[8]
[14]
See ref. and: a) M. Hecht, T. Fischer, P. Dietrich, W. Kraus,
[1] a) N. Aratani, A. Osuka, Y. H. Kim, D. H. Jeong, D. Kim,
Angew. Chem. Int. Ed. 2000, 39, 1458–1462; Angew. Chem.
2000, 112, 1517–1521; b) D. Holten, D. F. Bocian, J. S. Lindsey,
Acc. Chem. Res. 2002, 35, 57–69; c) H. E. Song, M. Taniguchi,
M. Speckbacher, L. Yu, D. F. Bocian, J. S. Lindsey, D. Holten,
J. Phys. Chem. B 2009, 113, 8011–8019; d) J. S. Lindsey, O.
Mass, C.-Y. Chen, New J. Chem. 2011, 35, 511–516; e) Y. Tera-
zono, G. Kodis, K. Bhushan, J. Zaks, C. Madden, A. L. Moore,
T. A. Moore, G. R. Fleming, D. Gust, J. Am. Chem. Soc. 2011,
133, 2916–2922; f) M. Benstead, G. H. Mehl, R. W. Boyle, Tet-
rahedron 2011, 67, 3573–3601.
A. B. Descalzo, W. E. S. Unger, K. Rurack, ChemistryOpen
2013, 2, 25–38; b) J. H. Gibbs, L. T. Robins, Z. Zhou, P. Boba-
dova-Parvanova, M. Cottam, G. T. McCandless, F. R. Fron-
czek, M. G. H. Vicente, Bioorg. Med. Chem. 2013, 21, 5770–
5781.
F. Li, S. I. Yang, Y. Ciringh, J. Seth, C. H. Martin III, D. L.
Singh, D. Kim, R. R. Birge, D. F. Bocian, D. Holten, J. Am.
Chem. Soc. 1998, 120, 10001–10017.
a) E. Van Caemelbecke, S. Will, M. Autret, V. A. Adamian, J.
Lex, J. P. Gisselbrecht, M. Gross, E. Vogel, K. M. Kadish, In-
org. Chem. 1996, 35, 184–192; b) S. Will, J. Lex, E. Vogel, V. A.
Adamian, E. Van Caemelbecke, K. M. Kadish, Inorg. Chem.
1996, 35, 5577–5583; see also ref.[28]
[15]
[16]
[2] a) D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001,
34, 40–48; b) D. Gust, T. A. Moore, A. L. Moore, Acc. Chem.
Res. 2009, 42, 1890–1898.
[17]
[18]
a) Z. Gross, N. Galili, I. Saltsman, Angew. Chem. Int. Ed. 1999,
38, 1427–1429; Angew. Chem. 1999, 111, 1530–1533; b) R. Pao-
lesse, L. Jaquinod, D. J. Nurco, S. Mini, F. Sagone, T. Boschi,
K. M. Smith, Chem. Commun. 1999, 1307–1308; c) B. Kosz-
arna, D. T. Gryko, J. Org. Chem. 2006, 71, 3707–3717; d) D. T.
Gryko, Chem. Commun. 2000, 2243–2244; e) D. T. Gryko, K.
Jadach, J. Org. Chem. 2001, 66, 4267–4275.
For oxidation catalysis, see: a) I. Luobeznova, M. Raizman, I.
Goldberg, Z. Gross, Inorg. Chem. 2006, 45, 386–394; b) R.
Zhang, D. N. Harischandra, M. Newcomb, Chem. Eur. J. 2005,
11, 5713–5720; c) Z. Gross, L. Simkhovich, N. Galili, Chem.
Commun. 1999, 599–600; for reduction catalysis: d) A.
Mahammed, H. B. Gray, A. E. Meier-Callahan, Z. Gross, J.
Am. Chem. Soc. 2003, 125, 1162–1163; e) J. Grodkowski, P.
Neta, E. Fujita, A. Mahammed, L. Simkhovich, Z. Gross, J.
[3] a) E. D. Sternberg, D. Dolphin, C. Brückner, Tetrahedron 1998,
54, 4151–4202; b) F. Schmitt, P. Govindaswamy, G. Süss-Fink,
W. H. Ang, P. J. Dyson, L. Juillerat-Jeanneret, B. Therrien, J.
Med. Chem. 2008, 51, 1811–1816; c) A. Wiehe, Y. M. Shaker,
J. C. Brandt, S. Mebs, M. O. Senge, Tetrahedron 2005, 61,
5535–5564; d) A. P. Castano, P. Mroz, M. R. Hamblin, Nat.
Rev. Cancer 2006, 6, 535–545; e) R. R. Allison, C. H. Sibata,
Photodiagn. Photodyn. Ther. 2010, 7, 61–75; f) L. B. Josefsen,
R. W. Boyle, Theranostics 2012, 2, 916–966.
[4] a) E. M. Barea, V. Gónzalez-Pedro, T. R. Sanchis, H. P. Wu,
L. L. Li, J. Phys. Chem. C 2011, 115, 10898–10902; b) T.
Hasobe, in: Handbook of Porphyrin Science, World Scientific
Publishing, Singapore, 2014, vol. 34, p. 147–194.
[5] a) G. Simonneaux, P. Le Maux, S. Chevance, H. Srour, in:
Handbook of Porphyrin Science, World Scientific Publishing,
4236
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 4224–4237