Full Paper
D-5-azido-3,4,6-tri-O-benzyl-5-deoxy-1,2-O-methylen-myo-
inositol (29).
Keywords: Cyclitols · Biocatalysis · Amino alcohols ·
Dihydroxylation · Asymmetric synthesis
[1] R. L. Mann, R. M. Gale, R. F. van Abeele, Antibiot. Chemother. 1953, 3,
1279–1282.
[2] M. del Carmen Guerrero, J. Modolell, Eur. J. Biochem. 1980, 107, 409–414.
[3] R. C. Pittenger, R. N. Wolfe, M. M. Hoehn, P. N. Marks, W. A. Daily, J. M.
McGuire, Antibiot. Chemother. 1953, 3, 1268–1278.
[4] S. Omura, A. Nakagawa, T. Fujimoto, K. Saito, K. Otoguro, J. C. Walsh, J.
Antibiot. 1987, 40, 1619–1626.
[5] A. Nakagwa, T. Fujimoto, S. Omura, J. C. Walsh, R. L. Stotish, B. George,
J. Antibiot. 1987, 40, 1627–1635.
[6] S. F. Hayashi, L. J. L. Norcia, S. B. Seibel, A. M. Silvia, J. Antibiot. 1997, 50,
514–521.
[7] N. Chida, M. Ohtsuka, K. Nakazawa, S. Ogawa, J. Org. Chem. 1991, 56,
2976–2983.
[8] a) T. J. Donohoe, A. Flores, C. J. R. Bataille, F. Churruca, Angew. Chem. Int.
Ed. 2009, 48, 6507–6510; Angew. Chem. 2009, 121, 6629; b) T. J. Dono-
hoe, A. Flores, C. J. R. Bataille, F. Churruca, Angew. Chem. Int. Ed. 2009,
48, 6507; Angew. Chem. 2009, 121, 6629–6632.
[9] H.-J. Lo, Y.-K. Chang, T.-H. Yan, Org. Lett. 2012, 14, 5896–5899.
[10] B. M. Trost, J. Dudash Jr., O. Dirat, Chem. Eur. J. 2002, 8, 259–268.
[11] N. Palaniappan, S. Ayers, S. Gupta, E.-S. Habib, K. A. Reynolds, Chem. Biol.
2006, 13, 753–764.
[12] B. P. Gurale, M. S. Shashidhar, R. G. Gonnade, J. Org. Chem. 2012, 77,
5801–5807.
[13] N. Chida, M. Ohtsuka, K. Nakazawa, S. Ogawa, J. Chem. Soc., Chem. Com-
mun. 1989, 436–438.
[14] a) B. M. Trost, O. Dirat, J. Dudash Jr., E. J. Hembre, Angew. Chem. Int. Ed.
2001, 40, 3658–3660; Angew. Chem. 2001, 113, 3770; b) B. M. Trost, O.
Dirat, J. Dudash, E. J. Hembre, Angew. Chem. Int. Ed. 2001, 40, 3658;
Angew. Chem. 2001, 113, 3770–3772.
[15] T. J. Donohoe, P. D. Johnson, R. J. Pye, M. Keenan, Org. Lett. 2005, 7,
1275–1277.
[16] a) A. Bellomo, D. Gonzalez, Tetrahedron Lett. 2007, 48, 3047–3051; b) N.
Thevenet, V. de la Sovera, M. A. Vila, N. Veiga, D. Gonzalez, G. Seoane, I.
Carrera, Org. Lett. 2015, 17, 684–687.
The general procedure for the synthesis of dioxolane under acidic
conditions using pTsOH as catalyst was used, but changing DCM for
CHCl3 as solvent, in order to increase de boiling point temperature.
Purification was accomplished by flash chromatography, using SiO2
as stationary phase, and performing the following gradient elution:
5 %, then 10 % (v/v of AcOEt in Hexane). Colorless oil (89 % yield).
α2D5.5 = +10 (c = 0.73, MeOH). 1H NMR (400 MHz, CDCl3) δ (ppm):
7.42 – 7.26 (m, 15H, 3xPh), 5.18 (s, 1H, OCH2O), 4.99 (s, 1H, OCH2O),
4.86 (d, Jgem = 11.3 Hz, 1H, OCH2Ph), 4.82 – 4.69 (m, 5H, OCH2Ph),
4.20 – 4.12 (m, 2H, H1 + H2), 3.75 (dd, J3-4 = 8.3 Hz, J2-3 = 3.2 Hz,
1H, H3), 3.69 (t, J3-4 = J4-5 = 8.3 Hz, 1H, H4), 3.61 – 3.50 (m, 1H, H6),
3.39 (dd, J5-6 = 10.3 Hz, J4-5 = 8.3 Hz, 1H, H5). 13C NMR (101 MHz,
CDCl3) δ (ppm): 137.9 (2xPhquaternary), 137.8 (Phquaternary), 128.6
(2xPh), 128.6 (2xPh), 128.5 (2xPh), 128.4 (2xPh), 128.3 (2xPh), 128.1
(Ph), 128.1 (Ph), 128.0 (2xPh), 128.0 (Ph), 95.5 (OCH2O), 79.3 (C4),
79.0 (C6), 78.9 (C1 or 2), 77.3 (C3), 75.3 (C2 or 1), 75.2 (OCH2Ph), 73.9
(OCH2Ph), 73.2 (OCH2Ph), 65.8 (C5). FT-IR (νmax/cm): 3030 (=C-H
˜
arom), 2876 (C-H), 2106 (N3), 1954 (Ph), 1877 (Ph), 1811 (Ph),
1497 (Ph), 1454 (Ph), 1207 (C-O-C-O-C), 1094 (C-O-C-O-C), 920
(-OCH2O-), 737 (Ph), 698 (Ph). DI-MS m/z (Rel. Int): 458 (0.2), 396
(0.6, [M – Bn]+), 262 (2), 106 (7), 91 (100), 65 (5). HRMS (ESI/Q-
TOF) m/z: [M + Na]+ Calcd for [C28H29N3O5Na]+: 510.1999, found
510.1966.
D-5-amino-5-deoxy-1,2-O-methylen-myo-inositol (30).
[17] C. Coronel, G. Arce, C. Iglesias, C. M. Noguera, P. R. Bonnecarrère, S. R.
Giordano, D. Gonzalez, J. Mol. Catal. B 2014, 102, 94–98.
[18] a) V. de la Sovera, P. Garay, N. Thevenet, M. A. Macias, D. Gonzalez, G.
Seoane, I. Carrera, Tetrahedron Lett. 2017, 57, 2484–2487; b) J. A. Griffen,
J. C. White, G. Kociok-Köhn, M. D. Lloyd, A. Wells, T. C. Arnot, S. E. Lewis,
Tetrahedron 2013, 69, 5989–5997; c) S. Pilgrim, G. Kociok-Köhn, M. D.
Lloyd, S. E. Lewis, Chem. Commun. 2011, 47, 4799–4801; d) B. J. Paul, J.
Willis, T. A. Martinot, I. Ghiviriga, K. A. Abboud, T. Hudlický, J. Am. Chem.
Soc. 2002, 124, 10416–10426.
[19] a) M. Pazos, B. Gonzalez, L. Suescun, G. Seoane, I. Carrera, Tetrahedron
Lett. 2017, 58, 2182–2185; b) C. Vitelio, A. Bellomo, M. Brovetto, G. Seo-
ane, D. Gonzalez, Carbohydr. Res. 2004, 339, 1773–1778; c) A. Bellomo,
C. Giacomini, B. Brena, G. Seoane, D. Gonzalez, Synth. Commun. 2007,
37, 3509.
[20] a) A. Bellomo, J. B. Bonilla, J. López-Prados, M. Martín-Lomas, D. Gonzalez,
Tetrahedron: Asymmetry 2009, 20, 2061–2064; b) G. Carrau, N. Veiga, L.
Suescun, G. F. Giri, A. G. Suárez, R. Spanevello, D. González, Tetrahedron
Lett. 2016, 57, 4791–4794.
[21] a) K. A. Oppong, T. Hudlicky, F. Yan, C. York, B. V. Nguyen, Tetrahedron
1999, 55, 2875–2880; b) T. Hudlicky, J. Rouden, H. Luna, S. Allen, J. Am.
Chem. Soc. 1994, 116, 5099–5107; c) T. Hudlicky, H. F. Olivo, Tetrahedron
Lett. 1991, 32, 6077–6080.
The same procedure described for compound 25 was applied for
synthesizing 30. Colorless syrup (85 % yield). Hydrochloride: αD25.5
=
–42 (c = 1.41, MeOH). 1H NMR (400 MHz, D2O, HDO signal was used
as internal reference at δ = 4.79 ppm) δ (ppm): 5.22 (s, 1H, OCH2O),
4.98 (s, 1H, OCH2O), 4.26 – 4.13 (m, 2H, H1 and H2), 3.95 – 3.86 (m,
1H, H3), 3.71 (t, J3-4 = J4-5 = 9.9 Hz, 1H, H4), 3.65 – 3.55 (m, 1H, H6),
2.96 (t, J4-5 = J5-6 = 9.9 Hz, 1H, H5). 13C NMR (101 MHz, D2O, CH3
signal of EtOH was used as internal reference at δ = 17.47 ppm) δ
(ppm): 95.4 (OCH2O), 78.7 (C1), 77.9 (C2), 70.9 (C3), 70.4 (C6), 70.1
(C4), 55.3 (C5). FT-IR (νmax/cm): 3404 (OH), 2922 (CH2), 2851 (C-H),
˜
1636 (N-H), 1240 (C-N), 1165 (C-O-C-O-C), 1069 (C-O-C-O-C), 924
(-OCH2O-). DI-MS m/z (Rel. Int): 191 (2, [M]·+), 173 (4), 126 (3), 113
(6), 101 (20), 88 (100) 72 (38), 60 (31). HRMS (ESI/Q-TOF) m/z: [M +
H]+ Calcd for [C7H14NO5]+: 192.0866, found 192.0866.
[22] a) V. de la Sovera, A. Bellomo, D. Gonzalez, Tetrahedron Lett. 2011, 51,
430–433; b) V. de la Sovera, L. Suescun, A. Bellomo, D. Gonzalez, Eur. J.
Org. Chem. 2017, 2017, 3912–3916.
Acknowledgments
[23] G. Carrau, C. C. Drewes, A. L. B. Shimada, A. Bertucci, S. H. P. Farsky, H. A.
Stefani, D. Gonzalez, Bioorg. Med. Chem. 2013, 21, 4225–4232.
[24] M. A. Vila, M. Brovetto, D. Gamenara, P. Bracco, G. Zinola, G. Seoane,
S. Rodríguez, I. Carrera, J. Mol. Catal. B 2013, 96, 14–20.
[25] T. C. Nugent, T. Hudlicky, J. Org. Chem. 1998, 63, 510–520.
[26] J. S. Bajwa, R. C. Anderson, Tetrahedron Lett. 1991, 32, 3021–3024.
The authors are grateful to PEDECIBA and CSIC-UdelaR for sup-
port of this project. GC acknowledges Agencia Nacional de In-
vestigación e Innovación (ANII) and Comisión Académica de
Posgrado (CAP) for a PhD fellowship. The authors also acknowl-
edge Prof. Alejandra Rodriguez for HRMS experiments.
Eur. J. Org. Chem. 0000, 0–0
14
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim