readily prepared by known procedures. While Kim and co-
workers recently reported the use of benzyl- and phenoxy-
phosphonic acids as competent directing groups for
palladium(II) and during the preparation of this manu-
script, Lee and Miura reported the Rh(III)-catalyzed
oxidative cyclization of alkynes and arylphosphonic acid;
however, simple arylphosphonates and phosphonamides
as directing groups in Rh(III) catalysis are still unknown
and also until now no example exists for Rh(III)-catalyzed
phosphoryl-related group directed hydroarylation and
CÀH/CÀH coupling reaction.7,8 Herein, we report a
rhodium(III)-catalyzed oxidative CÀH activation of sim-
ple arylphosphonate esters and phosphonamides and sub-
sequent coupling with alkenes (Heck reaction), internal
alkynes (hydroarylation and oxidative cyclization), or
simple arenes (dehydrogenative coupling) to give access
todiverse P-containing functional frameworks (Scheme 1).
Our preliminary investigation focused on the oxidative
Heck-type coupling of diethyl phenylphosphonate (1a)
with n-butyl acrylate. After screening several parameters
(Table S1 in the Supporting Information), the product 3a
was obtained in 77% isolated yield in the presence of the
pregenerated cationic rhodium species RhCp*(CH3CN)3-
(SbF6)2 (2.5 mol %), and Cu(OAc)2 (1.0 equiv) in DCE
under air at 130 °C for 24 h (Table S1, entry 14). Subse-
quently, we examined the scope of olefins as well as
aryl phosphonates and phosphonamides in the oxida-
tive Heck-type reaction. Overall, we were pleased with
the generality of this method. As shown in Scheme 2,
Scheme 2. Scope of the Oxidative Heck Reaction with Diverse
Aryl Phosphonates and Olefins
Scheme 1. Arylphosphonates and Phosphonamides As
Directing Groups in Rh(III) Catalysis
(4) For selected examples of the carbonyl-derived directing groups in
the Rh(III)-catalyzed oxidative Heck reaction, see: (a) Ueura, K.; Satoh,
T.; Miura, M. Org. Lett. 2007, 9, 1407. (b) Mochida, S.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024. (c) Park, S. H.; Kim,
J. Y.; Chang, S. Org. Lett. 2011, 13, 2372. (d) Wang, F.; Song, G.; Li, X.
Org. Lett. 2010, 12, 5430. (e) Patureau, F. W.; Glorius, F. J. Am. Chem.
Soc. 2010, 132, 9982. (f) Patureau, F. W.; Besset, T.; Glorius, F. Angew.
Chem., Int. Ed. 2011, 50, 1064. (g) Rakshit, S.; Grohmann, C.; Besset, T.;
Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (h) Besset, T.; Kuhl, N.;
Patureau, F. W.; Glorius, F. Chem.;Eur. J. 2011, 17, 7167. (i) Will-
wacher, J.; Rakshit, S.; Glorius, F. Org. Biomol. Chem. 2011, 9, 4736. (j)
Gong, T.-J.; Xiao, B.; Liu, Z.-J.; Wan, J.; Xu, J.; Luo, D.-F.; Fu, Y.; Liu,
L. Org. Lett. 2011, 13, 3235. (k) Zhao, P.; Niu, R.; Wang, F.; Han, K.; Li,
X. Org. Lett. 2012, 14, 4166.
(5) For selected examples of carbonyl-derived directing groups in the
Rh(III)-catalyzed reaction with alkynes (hydroarylation and oxidative
cyclization), see: (a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess,
K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. (b) Schipper,
D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910.
(c) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565. (d)
Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
9585. (e) Huestis, M.; Chan, P. L.; Stuart, D. R.; Fagnou, K. Angew.
Chem., Int. Ed. 2011, 50, 1338. (f) Guimond, N.; Gorelsky, S. I.; Fagnou,
K. J. Am. Chem. Soc. 2011, 133, 6449. (g) Patureau, F. W.; Besset, T.;
Kuhl, N.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154. (h) Muralirajan,
K.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2011, 50,
4169. (i) Li, B.; Ma, J.; Liang, Y.; Wang, N.; Xu, S.; Song, H.; Wang, B.
Eur. J. Org. Chem. 2013, 1950. (j) Pham, M. V.; Ye, B.; Cramer, N.
Angew. Chem., Int. Ed. 2012, 51, 10610.
regardless of the electronic and steric effects, the phospho-
nates and phosphonamides were coupled smoothly with
olefins to afford the desired 2-(1-alkenyl)phenylphos-
phonates and 2-(1-alkenyl)phenyl phosphonamides in
satisfactory yields (Scheme 2, 3aÀi). The position of an
additional substituent on substrates had little effect on the
reaction efficiency as shown in the cases of diethyl phenyl-
phosphonates bearing a methyl or methoxy substituent at
the 2-, 3-, or 4-position (3b, 3c, 3e, and 3f, respectively). As
expected the reactions occurred preferentially at the more
sterically accessible position when a meta-substituent is
present in the phenyl ring of the aryl phosphonates
(Scheme 2, 3c). This method was remarkably compatible
with a variety of important functional groups such as
fluorine, and methoxy groups, which could be subjected
(7) (a) Meng, X.; Kim, S. Org. Lett. 2013, 15, 1910. (b) Chan, L. Y.;
Cheong, L.; Kim, S. Org. Lett. 2013, 15, 2186. (c) Chary, B. C.; Kim, S.;
Park, Y.; Kim, J.; Lee, P. H. Org. Lett. 2013, 15, 2692. (d) Chan, L. Y.;
Kim, S.; Ryu, T.; Lee, P. H. Chem. Commun. 2013, 49, 4682.
(8) (a) Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P. H. Org.
Lett. 2013, 15, 3358. (b) Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano,
K.; Satoh, T.; Miura, M. Org. Lett. 2013, 15, 3258. (c) Itoh, M.;
Hashimoto, Y.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013,
DOI:10.1021/jo401393b.
(6) Until now, only a few examples of carbonyl-derived directing
groups in Rh(III)-catalyzed dehydrogenative cross-coupling, see: (a)
Wencel-Delord, J.; Nimphius, C.; Patureau, F. W.; Glorius, F. Angew.
Chem., Int. Ed. 2012, 51, 2247. (b) Morimoto, K.; Ioh, M.; Hirano, K.;
Satoh, T.; Shibata, Y.; Tanaka, K.; Miura, M. Angew. Chem., Int. Ed.
2012, 51, 5359. (c) Wencel-Delord, J.; Nimphius, C.; Wang, H.; Glorius,
F. Angew. Chem., Int. Ed. 2012, 51, 13001.
Org. Lett., Vol. 15, No. 17, 2013
4505