ChemComm
Communication
(b) H. Amii and K. Uneyama, Chem. Rev., 2009, 109, 2119;
(c) S. A. Macgregor, Chem. Soc. Rev., 2007, 36, 67; (d) E. Clot,
O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. Mcgrady and
R. N. Perutz, Acc. Chem. Res., 2011, 44, 333.
and 1j was carried out on a gram scale (entries 6 and 10,
Table 2), and the desired products 2f and 2j were furnished
with results of 88% ee, 88% yield and 89% ee, 91% yield.
In summary, we have successfully developed an efficient
system to access the chiral fluorinated tetrahydroisoquinolines
via asymmetric hydrogenation of the corresponding fluorinated
isoquinoline derivatives with up to 93% ee. Stoichiometric acid as
well as a catalytic amount of additive were vital for the reactivity,
enantioselectivity and inhibition of the hydrodefluorination path-
way. Further investigation on the application of the developed
strategy and detailed mechanistic studies of the catalytic cycle are
currently ongoing in our laboratory.
7 For selected works on defluorination or hydrodefluorination by
oxidative addition to low-valent transition metals see: (a) H. Yang,
H. R. Gao and R. J. Angelici, Organometallics, 1999, 18, 2285;
(b) N. Y. Adonin and V. F. Starichenko, J. Fluorine Chem., 2000,
101, 65; (c) J. A. Panetier, S. A. Macgregor and M. K. Whittlesey,
Angew. Chem., Int. Ed., 2011, 50, 2783; (d) M. F. Kuehnel, D. Lentz
and T. Braun, Angew. Chem., Int. Ed., 2013, 52, 3328; (e) H. B. Lv,
Y. B. Cai and J. L. Zhang, Angew. Chem., Int. Ed., 2013, 52, 3203.
8 For recent examples of the b-halide elimination process in the
transition metal catalysis system see: (a) L. A. Watson, D. V.
Yandulov and K. G. Caulton, J. Am. Chem. Soc., 2001, 123, 603;
(b) S. A. Strasizar and P. T. Wolczanski, J. Am. Chem. Soc., 2001,
123, 4728; (c) B. M. Kraft and W. D. Jones, J. Am. Chem. Soc., 2002,
124, 8681; (d) T. Braun, D. Noveski, B. Neumann and H.-G.
Stammler, Angew. Chem., Int. Ed., 2002, 41, 2745; (e) R. A. Stockland,
S. R. Foley and R. F. Jordan, J. Am. Chem. Soc., 2003, 125, 796;
( f ) T. R. Cundari and C. D. Taylor, Organometallics, 2003, 22, 4047;
This work was financially supported by the National Natural
Science Foundation of China (21032003 & 21125208) and the
National Basic Research Program of China (2010CB833300).
´
(g) E. Clot, C. Megret, B. M. Kraft, O. Eisenstein and W. D. Jones,
Notes and references
J. Am. Chem. Soc., 2004, 126, 5647.
1 For selected reviews on the unique role of fluorine in organic,
agricultural, medicinal, and material chemistries see: (a) K. Muller,
C. Faeh and F. Diederich, Science, 2007, 317, 1881; (b) W. K. Hagmann,
J. Med. Chem., 2008, 51, 4359; (c) D. O’Hagan, Chem. Soc. Rev., 2008,
37, 308; (d) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur,
Chem. Soc. Rev., 2008, 37, 320; (e) T. Furuya, A. S. Kamlet and T. Ritter,
Nature, 2011, 473, 470.
9 For works on asymmetric hydrogenation of isoquinolines see:
(a) S.-M. Lu, Y.-Q. Wang, X.-W. Han and Y.-G. Zhou, Angew. Chem.,
Int. Ed., 2006, 45, 2260; (b) L. Shi, Z.-S. Ye, L.-L. Cao, R.-N. Guo, Y. Hu
and Y.-G. Zhou, Angew. Chem., Int. Ed., 2012, 51, 8286; (c) A. Iimuro,
K. Yamaji, S. Kandula, T. Nagano, Y. Kita and K. Mashima,
Angew. Chem., Int. Ed., 2013, 52, 2046; (d) Z.-S. Ye, R.-N. Guo, X.-F.
Cai, M.-W. Chen, L. Shi and Y.-G. Zhou, Angew. Chem., Int. Ed., 2013,
52, 3685.
2 For recent reviews on asymmetric synthesis of chiral organofluorine
compounds see: (a) J. A. Ma and D. Cahard, Chem. Rev., 2004, 10 T. Xu and G. Liu, Org. Lett., 2012, 14, 5416.
104, 6119; (b) K. Mikami, Y. Itoh and M. Yamanaka, Chem. Rev., 11 For selected reports on halide effects in transition metal catalysis
¨
2004, 104, 1; (c) C. Bobbio and V. Gouverneur, Org. Biomol. Chem.,
2006, 4, 2065; (d) V. A. Brunet and D. O’Hagan, Angew. Chem.,
Int. Ed., 2008, 47, 1179; (e) J. A. Ma and D. Cahard, Chem. Rev., 2008,
108, Pr1; ( f ) D. Cahard, X. H. Xu, S. Couve-Bonnaire and
X. Pannecoucke, Chem. Soc. Rev., 2010, 39, 558.
3 For selected recent works on direct asymmetric fluorination see:
(a) T. D. Beeson and D. W. C. MacMillan, J. Am. Chem. Soc.,
see: (a) H.-U. Blaser, H.-P. Buser, R. Hausel, H.-P. Jalett and
F. Spindler, J. Organomet. Chem., 2001, 621, 34; (b) C. Y. Legault
and A. B. Charette, J. Am. Chem. Soc., 2005, 127, 8966; (c) T. Yamagata,
H. Tadaoka, M. Nagata, T. Hirao, Y. Kataoka, V. Ratovelomanana-
Vidal, J. P. Genet and K. Mashima, Organometallics, 2006, 25, 2505;
(d) N. Fleury-Bregeot, V. de la Fuente, S. Castillon and C. Claver,
ChemCatChem, 2010, 2, 1346.
2005, 127, 8826; (b) M. Marigo, D. I. Fielenbach, A. Braunton, 12 The additive was supposed to play an important role of catalyst
A. Kjoersgaard and K. A. Jørgensen, Angew. Chem., Int. Ed., 2005,
44, 3703; (c) V. Rauniyar, A. D. Lackner, G. L. Hamilton and
activator by oxidizing a low-valent metal to a more active species,
simultaneously inhibiting hydrodefluorination Path A (eqn (1)).
F. D. Toste, Science, 2011, 334, 1681; (d) F. Li, L. Sun, Y. Teng, 13 For selected works on Brønsted acid effects in asymmetric hydro-
P. Yu, J. C. G. Zhao and J. A. Ma, Chem.–Eur. J., 2012, 18, 14255;
(e) R. J. Phipps, K. Hiramatsu and F. D. Toste, J. Am. Chem. Soc.,
2012, 134, 8376; ( f ) W. T. Meng, Y. Zheng, J. Nie, H. Y. Xiong and
J. A. Ma, J. Org. Chem., 2013, 78, 559; (g) R. J. Phipps and F. D. Toste,
J. Am. Chem. Soc., 2013, 135, 1268.
4 For previous works on asymmetric hydrogenation of vinyl fluorides
see: (a) T. Allmendinger, C. Dandois and B. Walliser, Tetrahedron
Lett., 1991, 32, 2735; (b) M. Saburi, L. M. Shao, T. Sakurai and
Y. Uchida, Tetrahedron Lett., 1992, 33, 7877; (c) S. W. Krska, J. V. Mitten,
M. H. Kress, Y. K. Sun and T. D. Nelson, WO/2006/069287A1, 2006;
(d) M. Engman, J. S. Diesen, A. Paptchikhine and P. G. Andersson,
genation by forming corresponding iminium salts see: (a) G. Hou,
F. Gosselin, W. Li, C. McWilliams, Y. K. Sun, M. Weisel, P. D.
O’Shea, C. Y. Chen, I. W. Davies and X. Zhang, J. Am. Chem. Soc.,
2009, 131, 9882; (b) G. H. Hou, W. Li, M. F. Ma, X. W. Zhang and
X. Zhang, J. Am. Chem. Soc., 2010, 132, 12844; (c) G. H. Hou, R. Tao,
Y. Sun, X. Zhang and F. Gosselin, J. Am. Chem. Soc., 2010, 132, 2124;
(d) D.-S. Wang, Q.-A. Chen, W. Li, C.-B. Yu, Y.-G. Zhou and X. Zhang,
J. Am. Chem. Soc., 2010, 132, 8909; (e) D.-S. Wang, J. Tang,
Y.-G. Zhou, M.-W. Chen, C.-B. Yu, Y. Duan and G.-F. Jiang, Chem.
Sci., 2011, 2, 803; ( f ) D.-S. Wang, Z.-S. Ye, Q.-A. Chen, Y.-G. Zhou,
C.-B. Yu, H.-J. Fan and Y. Duan, J. Am. Chem. Soc., 2011, 133, 8866.
J. Am. Chem. Soc., 2007, 129, 4536; (e) M. Engman, P. Cheruku, 14 Notably, a control experiment on acid amount showed that stoichio-
P. Tolstoy, J. Bergquist, S. F. Volker and P. G. Andersson, Adv. Synth.
Catal., 2009, 351, 375; ( f ) S. W. Krska, J. V. Mitten, P. G. Dormer,
D. Mowrey, F. Machrouhi, Y. K. Sun and T. D. Nelson, Tetrahedron,
2009, 65, 8987.
metric acid is necessary while catalytic amount gave an unsatis-
factory enantioselectivity (89% vs. 41%), probably because of the
difficult dissociation of the hydrogenation product, fluorinated
tetrahydroisoquinolinium chlorides.
5 For reviews on asymmetric hydrogenation of aromatic compounds 15 (a) J. D. Phillipson, M. F. Roberts and M. H. Zenk, The Chemistry and
see: (a) F. Glorius, Org. Biomol. Chem., 2005, 3, 4171; (b) Y.-G. Zhou,
Acc. Chem. Res., 2007, 40, 1357; (c) D.-S. Wang, Q.-A. Chen, S.-M. Lu
and Y.-G. Zhou, Chem. Rev., 2012, 112, 2557.
6 For reviews on transition metal-mediated carbon–fluorine bond
activation including fluorinated aromatics see: (a) J. L. Kiplinger,
T. G. Richmond and C. E. Osterberg, Chem. Rev., 1994, 94, 373;
Biology of Isoquinoline Alkaloids, Springer, Berlin, 1985; (b) R. Paul,
J. A. Coppola and E. Cohen, J. Med. Chem., 1972, 15, 720; (c) N. M.
Gray, B. K. Cheng, S. J. Mick, C. M. Lair and P. C. Contreras,
J. Med. Chem., 1989, 32, 1242; (d) K. W. Bentley, Nat. Prod. Rep.,
2006, 23, 444. For reviews, see: (e) J. D. Scott and R. M. Williams,
Chem. Rev., 2002, 102, 1669.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 8537--8539 8539