Site-SelectiVe Catalysis of Phenyl Thionoformate Transfer
SCHEME 1
SCHEME 2
we sought to capitalize on developments in our own laboratory
around peptide-embedded nucleophiles (e.g., 1).10 In this spirit,
we have demonstrated that short peptide derivatives of histidine
allow for highly enantioselective and site-selective alcohol
derivatizations,11 among them acylations (i.e., to deliver 2),12
phosphorylations (3),13 and transfer of sulfur-based electrophiles
(4) (Scheme 2).14,15
The portability of the catalysis strategy to thiocarbonyl
transfer is not straightforward. Although the literature contains
numerous examples of thiocarbonylation as a prelude to
deoxygenation,16 the details of catalytic protocols are often
SCHEME 3
(4) (a) Kurahashi, T.; Mizutani, T.; Yoshida, J. J. Chem. Soc., Perkin
Trans. 1 1999, 465-473. (b) Gani, D. Nature 2001, 414, 703-705. (c)
Kurahashi, T.; Mizutani, T.; Yoshida, J. Tetrahedron 2002, 58, 8669-8677.
(d) Hu, G.; Vasella, A. HelV. Chim. Acta 2002, 85, 4369-4391. (e) Kattnig,
E.; Albert, M. Org. Lett. 2004, 6, 945-948. (f) Moitessier, N.; Englebienne,
P.; Chapleur, Y. Tetrahedron 2005, 61, 6839-6853. (g) Wang, C.-C.; Lee,
J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-
L.; Hung, S.-C. Nature 2007, 446, 896-899.
(5) (a) Fu, G. C. Acc. Chem. Res. 2000, 33, 412-420. (b) Vedejs, E.;
Daugulis, O., MacKay, J. A.; Rozners, E. Synlett 2001, 1499-1505. (c)
France, S.; Guerin, D. J.: Miller, S. J.; Lectka, T. Chem. ReV. 2003, 103,
2985-3012. (d) Denmark, S. E.; Fu, J. Chem. Commun. 2003, 167-170.
(e) Spivey, A. C.; Arseniyadis, S.; Fekner, T.; Maddaford, A.; Leese, D. P.
Tetrahedron 2006, 62, 295-301.
(6) (a) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809-1810.
(b) Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997,
119, 3169-3170. (c) Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. Angew.
Chem., Int. Ed. 2001, 40, 234-236. (d) Shaw, S. A.; Aleman, P.; Vedejs,
E. J. Am. Chem. Soc. 2003, 125, 13368-13369. (e) Spivey, A. C.; Zhu, F.;
Mitchell, M. B.; Davey, S. G.; Jarvest, L. R. J. Org. Chem. 2003, 68, 7379-
7385. (f) Fu, G. C. Acc. Chem. Res. 2004, 37, 542-547. (g) Spivey, A. C.;
Arseniyadis, S. Angew. Chem., Int. Ed. 2004, 43, 5436-5441.
(7) (a) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488-
9489. (b) Vedejs, E.; Daugulis, O.; Harper, L. A.; MacKay, J. A.; Powell,
D. R. J. Org. Chem. 2003, 68, 5020-5027. (c) Methot, J. L.; Roush, W. R.
AdV. Synth. Catal. 2004, 346, 1035-1050 and references therein.
(8) (a) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J.
J. Am. Chem. Soc. 2004, 126, 12226-12227. (b) Birman, V. B.; Jiang, H.
Org. Lett. 2005, 7, 3445-3447. (c) Birman, V. B.; Li, X.; Jiang, H.; Uffman,
E. W. Tetrahedron 2006, 62, 285-294. (d) Birman, V. B.; Li, X.; Han, Z.
Org. Lett. 2007, 9, 37-40.
variable. There are cases in which nucleophilic catalysts such
as DMAP are employed,17 but often pyridine is used simulta-
neously;18 there are also reports where thiocarbonylation is
carried out at high temperature in the absence of a catalyst.19
Nonetheless, we began our studies with the goal of exploring
whether the catalytic cycle described in Scheme 3 might be
viable. Our plan was to examine the potential of catalysts like
1 to capture phenyl chlorothionoformate (5) with the expectation
that intermediates related to 6 would be formed. Transfer of
thiocarbonyl to substrate would then deliver product 7, while
regenerating catalyst 1. Described below are our findings in
connection to our exploration of this potential catalytic cycle.
(9) Chiral diamines: (a) Oriyama, T.; Imai, K.; Hosoya, T.; Sano, T.
Tetrahedron Lett. 1998, 39, 397-400. (b) Oriyama, T.; Imai, K.; Sano, T.;
Hosoya, T. Tetrahedron Lett. 1998, 39, 3529-3532. Nucleophilic car-
benes: Enders, D.; Balensiefer, B. Acc. Chem. Res. 2004, 37, 534-541.
(10) Miller, S. J. Acc. Chem. Res. 2004, 37, 601-610.
(14) Evans, J. W.; Fierman, M. B.; Miller, S. J.; Ellman, J. A. J. Am.
Chem. Soc. 2004, 126, 8134-8135.
(15) For a related approach involving alcohol silylation, see: (a) Isobe,
T.; Fukuda, K.; Araki, Y.; Ishikawa, T. Chem. Commun. 2001, 243-244.
(b) Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature 2006,
443, 67-70.
(16) Barton, D. H. R.; Ferreira, J. A.; Jaszberenyi, J. C. PreparatiVe
Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York,
1997; pp 151-172.
(17) Rawal, V. H.; Newton, R. C.; Krishnamurthy, V. J. Org. Chem.
1990, 55, 5181-5183.
(11) (a) Griswold, K. S.; Miller, S. J. Tetrahedron 2003, 59, 8869-
8875. (b) Lewis, C. A.; Miller, S. J. Angew. Chem., Int. Ed. 2006, 45, 5616-
5619.
(12) (a) Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.; Bonitatebus, P.
J., Jr.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 11638-11643. (b)
Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6496-6502.
(c) Fierman, M. B.; O’ Leary, D. J.; Steinmetz, W. E.; Miller, S. J. J. Am.
Chem. Soc. 2004, 126, 6967-6971. (d) Lewis, C. A.; Chiu, A.; Kubryk,
M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen,
K. B.; Miller, S. J. J. Am. Chem. Soc. 2006, 128, 16454-16455.
(13) (a) Sculimbrene, B. R.; Miller, S. J. J. Am. Chem. Soc. 2001, 123,
10125-10126. (b) Sculimbrene, B. R.; Morgan, A. J.; Miller, S. J. J. Am.
Chem. Soc. 2002, 124, 11653-11656. (c) Sculimbrene, B. R.; Morgan, A.
J.; Miller, S. J. Chem. Commun. 2003, 1781-1785. (d) Sculimbrene, B.
R.; Xu, Y.; Miller, S. J. J. Am. Chem. Soc. 2004, 126, 13182-13183.
(18) For three examples of syntheses where both DMAP and pyridine
are used in combination to effect thiocarbonylation, see: (a) Denmark, S.
E.; Thorarensen, A. J. Org. Chem. 1994, 59, 5672-5680. (b) Rigby, J. H.;
Mateo, M. E. Tetrahedron 1996, 52, 10569-10582. (c) Shimokawa, J.;
Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew. Chem., Int.
Ed. 2004, 43, 1559-1562.
(19) Gaudino, J. J.; Wilcox, C. S. J. Am. Chem. Soc. 1990, 112, 4374-
4380.
J. Org. Chem, Vol. 73, No. 5, 2008 1775