10.1002/cplu.201800341
ChemPlusChem
FULL PAPER
[1] D. C. Milan, M. Krempe, A. K. Ismaell, L. D. Movsisyan, M. Franz, I. Grace,
R. J. Brooke, W. Schwarzacher, S. J. Hiiggins, H. L. Anderson, C. L. Lambert,
R. R. Tykwinski, R. J. Nichols, Nanoscalee, 2017, 9, 355-361.
Experimental Section
Materials and Instruments
[2] (a) C. Sagan, Y. Jiang, F. Cabaan, J. Snaider, R. Amell, S. Wei,
G. M. Florio, J. Phys. Chem. C 2017, 1121, 24945-24953. (b) G. Oektem, K.
Sahre, B. Voit, R. Jordan, A. Kiriy, Polymm. Chem. 2017, 8, 2675-2685.
[3] (a) S. Zhen, J. -C. Mao, L. Chen, S. Ding, W. Luo, X. -S. Zhou, A. Qin, Z.
1H, 19F and 13C NMR spectra were recorded on BRUKER Ascend
TM400 (1H/400 MHz), AMX500 (19F/470 MHz) and JEOL AL300 (1H/300
MHz), 400
(
13C/100 MHz), ECA600 (1H/600 MHz, 13C/150 MHz)
Zhao,
[doi:10.1021/acs.nanolett.8b01082]. (b)) N. Algethami, H. Sadeghi, S.
Sangtarash, C. J. Lambert, Naano Lett. 2018, in press [doi:
B.
Z.
Tnag,
Nanoo
Lett.
2018,
in
press
spectrometers, respectively. IR spectra were obtained on a JEOL JIR-
WINSPEC100 FT/IR spectrophotometer. Mass spectra were recorded
on a JMS-T100GCV spectrometer in FD and ESI mode. Column
chromatography was performed on a silica gel I-6-40 (YMC) with a
particle size of 40-63 m. Melting points were measured on a Yamato
MELTING POINT APPARATUS MODEL MP-21 and are uncorrected.
UV/Vis spectra were recorded on a HITACHI U-3500 spectrophotometer.
Spectroelectrograms were also measured on a U-3500 using YAZAWA
10.1021/acs.nanolett.8b01621]. (c) Y. Yuuan, J. -F. Yan, D. -Q. Lin, B. -W. Mao,
Y. -F. Yuan, Chem. Eur. J. 2018, 24, 355445-3555. (d) M. Gantenbein, L. Wang,
A. A. Al-Jobory, A. K. Ismael, G. J. Lambert, W. Hong, M. R. Bryce, Sci. Rep.
2017, 7, 2045-2322. (e) M. Sasaki, T. Kooyama, H. Kishida, K. Asaka, Y. Saito,
Y. Yoshida, G. Saito, J. Phys. Chem. Lettt. 2017, 8, 1702-1706.
[4] (a) T. Stuyver, T. Zeng, Y. Tsuji, S. Fiias, P. Geerlings, F. De Proft, J. Phys.
Chem. C 2018, 122, 2194-3200. (b) Y. Tanaka, M. Kiguchi, M. Akita, Chem.
Eur J 2017, 23, 4741 - 4749. (c) In SSingle-Molecule Electronics, (Ed.: M.
Kiguchi), Springer, Singapore, 2016. (d) M. Di Ventra, In Electrical Transport in
Nanoscale Systems, Cambridge University Press, Cambridge, 2008..
CS-12Z for constant-current electrolysis.
Cyclic Voltammetry was
conducted on a BAS ALS-600A. All commercially available compounds
were used without further purification. Solvents were dehydrated prior to
use. The synthetic routes for the preparation of 2-6, 8 and 9 are shown in
Schemes 2 and 4. Details on their preparation and spectral data are
given in the supplementary material.
[5] (a) D. Wendinger and R. R. Tykwinsski, Acc. Chem. Res. 2017, 50, 1468-
1479. (b) M. Klikar, P. Solanke, J. Tydliitás, and F. Bureš, Chem. Rec. 2016,
16, 1886-1905. (c) H. Muraoka and S. Ogawa, Pure Appl. Chem. 2013, 85,
Redox Potential Measurements
777-784.
(d)
J.
PPina
and
J.
S.
S. de Melo, Phys. Chem. Chem. Phys. 22009. 11, 8706-8713. (e) D. P. Arnold
and D. A. James, J. Org. Chem. 1997, 662, 3460-3469. (f) K. Maruyama and S.
Kawabata, Bull. Chem. Soc. Jpn. 1989, 662, 3498-3507.
Redox potentials (Eox and Ered) were measured by cyclic voltammetry in
dry MeCN containing 0.1 mol dm-3 Et4NClO4 as a supporting electrolyte,
respectively. All of the values shown in the text present E/V versus SCE
measured at a scan rate of 500 mV s-1. A Pt disk electrodes were used
as the working and counter electrodes, respectively. The working
electrode was polished using a water suspension of Al2O3 (0.05 m)
before use.
[6] (a) J. Andzane, J. Prikulis, d. Dvorsek, D. Mihailovic, D. Erts,
Nanotechnology, 2010, 21, 125706. (b)) T. Oike, T. Murata, K. Takimiya, T.
Otsubo, Y. Aso, H. Zahng, Y. Araki, OO. Ito, J. Am. Chem. Soc. 2005, 127,
15372-15373. (c) G. K. Ramachandrann, T. J. Hopson, A. M. Rawlett, L. A.
Nagahara, A. Primak, S. M. Lindsay, Scieence, 2003, 300, 1413-1416.
[7] (a) H. Takaoki, R. Katoono, K. Fujiwara, T. Suzuki, 2016, Angew. Chem. Int.
Ed. 55, 2582-2586. (b) T. Ohtake, H. TTanaka, T. Matsumoto, M. Kimura, A.
Ohta, J. Org. Chem. 2014, 79, 6590-66002. (c) H. Kurata, S. Kim, T. Fujimoto,
K. Matsumoto, T. Kawase, T. Kubo, OOrg. Lett. 2008, 10, 3837-3840. (d) J.
Nishida, T. Miyagawa, Y. Yamashita, Orgg. Lett. 2004, 6, 2623-2526
[8] (a) J. Areephong, J. H. Hurenkamp, MM. T. W. Milder, A. Meetsa, J. L. Herek,
W. R. Wesley, B. L. Feringa, Org. Letttt. 2009, 11, 721-724. (b) Y. Feng, Y.
Yan, S. Wang, W. Zhu, S. Qian, H. Tian, J. Mat. Chem. 2006, 16, 3685-3692.
[9] (a) T. Suzuki, H. Tamaoki, J. Nishidda, H. Higuchi, T. Iwai, Y. Ishigaki, K.
Hanada, R. Katoono, H. Kawai, K. Fujiwwara, T. Fukushima, in Organic Redox
Systems: Synthesis, Properties and Appplications, Chapter 2 Redox-mediated
reversible -bond formation/cleavage, (Ed.: T. Nishinaga), Wiley, 2015, pp.
13-38. (b) T. Suzuki, J. Nishida, T. Tsujji, Angew. Chem. Int. Ed. Engl. 1997,
36, 1329-1331.
X-ray Analyses
Crystal data of 2•1/3hexane: MF C44H32.67F8O4, MW = 777.40, pale
yellow prism, 0.10 x 0.10 x 0.10 mm3, cubic Ia3bar (#206), a =
27.6408(9) Å, V = 21118.0(12) Å3, (Z = 24) = 1.467 g cm-1, T = 153 K,
= 1.212 cm-1. The final R1 and wR2 values are 0.076 (I > 2) and 0.215
(all data) for 4045 reflections and 252 parameters. Esds for 2 are 0.004-
0.005 Å for bond lengths and 0.2-0.3 ° for bond angles, respectively.
CCDC 923999.
-
Crystal data of 22+(SbCl6 )2•EtOH: MF C44H34Cl12F8O5Sb2, MW
=
1463.61, dark red plate, 0.20 x 0.20 x 0.05 mm3, monoclinic P 21/c (#14),
a = 18.0750(2), b = 16.05605(15), c = 20.5277(2)Å, β = 106.9256(12)°, V
= 5699.37(11) Å3, (Z = 4) = 1.706 g cm-1, T = 150 K, = 13.290 cm-1.
The final R1 and wR2 values are 0.073 (I > 2I) and 0.230 (all data) for
11487 reflections and 618 parameters. Esds for 22+ are 0.007-0.015 Å
for bond lengths and 0.5-1.3° for bond angles, respectively. CCDC
1849047.
[10] (a) A part of this work was reported aas a preliminary communication. (b) T.
Suzuki, H. Tamaoki, R. Katoono, K. FFujiwara, J. Ichikawa, T. Fukushima,
Chem. Lett. 2013, 42, 703-705.
[11] (a) K. Geramita, Y. Tao, R. a. Segalmman, T. D. Tilley, J. Org. Chem. 2010,
75, 1871–1887. (b) K. Geramita, J. McBBee, T. D. Tilley, J. Org. Chem. 2009,
74, 820-829. (c) P. L. DeRoy, s. Surpreenant, M. Bertrand-Laperie, C. Yoakim,
Org. Lett. 2007, 9, 2714-2743.
[12] (a) T. Suzuki, A. Migita, H. Higuchii, H. Kawai, K. Fujiwara, and T. Tsuji,
Tetrahedron Lett. 2003, 44, 6837-6840. (b) T. Suzuki, J. Nishida, and T. Tsuji,
Chem. Commun. 1998, 2193-2194.
Acknowledgements
We thank Grant-in-Aid for Scientific Research on Innovative
Areas: "Middle molecular strategy" (No. 2707) from MEXT and
Grant-in-Aid from JSPS (Nos. 15H03790, 16K13968, 18K05069)
Japan. This work was also supported by the “Five-star Alliance”
[13] T. Suzuki, T. Iwai, E. Ohta, H. Kawaai, K. Fujiwara, Tetrahedron Lett. 2007,
48, 3599-3603.
[14] (a) S. Hünig, M. Kemmer, H. Wennner, I. F. Perepichka, P. Bäuerle, A.
Emge, and G. Gesheid, Chem. Eur. J. 1999, 5, 1969-1973. (b) S. Hünig, M.
Kemmer, H. Wenner, F. Barbosa, G. GGesheid, I. F. Perepichka, P. Bäuerle,
and A. Emge, Chem. Eur. J. 2000, 6, 26118-2632. (c) S. Hünig, I. F. Perepichka,
M. Kemmer, H. Wenner, P. Bäuerle, aand A. Emge, Tetrahedron 2000, 56,
4203-4211. (d) S. Hünig, C. A. Briehn, P. Bäuerle, and A. Emge, Chem. Eur. J.
2001, 7, 2745-2757. (e) S. Hünig, S. Alddenkortt, P. Bäuerle, C. A. Briehn, M.
in “NJRC Mater. & Dev.” MEXT.
.
Keywords: Dyrex System • Electrochromism • Dication •
Molecular Device • Molecular Switch
This article is protected by copyright. All rights reserved.