reaction under air. Thus, it is still a great challenge to use
molecular oxygen and simple starting materials in hetero-
cyclic compound synthesis.
Scheme 1. Aldehydes and Anilines in the Synthesis of Heterocycles
As the most prevalent heterocyclic compounds, quino-
lines not only have been widely found in natural products
with biological activity7 but also have been broadly used in
medical chemistry, drug synthesis,8 and functional com-
pound materials as building blocks.9 Generally quinoline
derivatives are synthesized by typical methods including
€
the Skraup reaction, Combes reaction, Friedlander reac-
tion, and ConradÀLimpachÀKnorr reaction.10 Recently,
new approaches based on multicomponent coupling and
tandem reactions catalyzed by transition metals have been
developed and have drawn more attention.11 So far, there
is no ideal method which provides a simple and easily
operableprotocol for the preparation of substituted quino-
lines from readily available materials. With the develop-
ment of CÀH functionalization and CÀC/CÀN bond
formation in organic chemistry, it would be attractive to
synthesize substituted quinolines by direct CÀH function-
alization and CÀC/CÀN bond formation under mild
reaction conditions.
Table 1. Optimization of Reaction Conditiona
temp
yield
(%)b
entry
[Cu]
CuI
additive
solvent
(°C)
1
CF3COOH
CH3COOH
CF3SO3H
TSOH
DMF
130
130
130
130
130
130
130
130
130
130
130
130
130
110
110
80
48
trace
80
74
68
58
62
63
45
82
15
86
63
90
84
75
À
Aldehydes and anilines, as commercially available and
useful substrates, have drawn more attention and have been
widely used in the synthesis of heterocyclic compounds.
2
CuI
DMF
3
CuI
DMF
4
CuI
DMF
5
CuBr
Cu(OAc)2
Cu(OTf)2
CuOTf
CuCl
CuI
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
CF3SO3H
DMF
6
DMF
(7) (a) Michael, J. P. Nat. Prod. Rep. 2001, 18, 543. (b) Funayama, S.;
Murata, K.; Noshita, T. Heterocycles 2001, 54, 1139.
7
DMF
8
DMF
(8) (a) Bax, B. D.; Chan, P. F.; Eggleston, D. S.; Fosberry, A.;
Gentry, D. R.; Gorrec, F.; Giordano, I.; Hann, M. M.; Hennessy, A.;
Hibbs, M.; Huang, J.; Jones, E.; Jones, J.; Brown, K. K.; Lewis, C. J.;
May, E. W.; Saunders, M. R.; Singh, O.; Spitzfaden, C. E.; Shen, C.;
Shillings, A.; Theobald, A. J.; Wohlkonig, A.; Pearson, N. D.; Gwynn,
M. N. Nature 2010, 466, 935. (b) Rouffet, M.; de Oliveira, C. A. F.; Udi,
Y.; Agrawal, A.; Sagi, I.; McCammon, J. A.; Cohen, S. M. J. Am. Chem.
Soc. 2010, 132, 8232. (c) Andrews, S.; Burgess, S. J.; Skaalrud, D.; Kelly,
J. X.; Peyton, D. H. J. Med. Chem. 2010, 53, 916.
9
DMF
10
11
12
13
14
15c
16
17
18
DMSO
DMA
CuBr
CuBr
CuBr
CuBr
CuBr
CuBr
DMSO
NMP
DMSO
DMSO
DMSO
DMSO
DMSO
(9) (a) Bhalla, V.; Vij, V.; Kumar, M.; Sharma, P. R.; Kaur, T. Org.
Lett. 2012, 14, 1012. (b) Velusamy, M.; Chen, C.-H.; Wen, Y. S.; Lin,
J. T.; Lin, C.-C.; Lai, C.-H.; Chou, P.-T. Organometallics 2010, 29, 3912.
110
110
€
(c) Li, H.; Jakle, F. Macromolecules 2009, 42, 3448. (d) Tao, S.; Li, L.;
CuBr
36
Yu, J.; Jiang, Y.; Zhou, Y.; Lee, C.-S.; Lee, S.-T.; Zhang, X.; Kwon, O.
Chem. Mater. 2009, 21, 1284.
a Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), copper salt
(0.03 mmol), additive (0.03 mmol), solvent (2 mL). b Yields of isolated
products. c The reaction was carried out under O2 (1 atm). Entry in bold
highlights optimized reaction conditions, and the reaction time was
monitored by TLC. DMSO = dimethyl sulfoxide, DMF = N,N-
Dimethylformamide, NMP = N-methyl-2-pyrrolidone.
(10) (a) Jones, G. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, A. R., Eds.; Pergamon: New York, 1984; Vol. 2, Part 2A, pp
395À482. (b) Chan, B. K.; Ciufolini, M. A. J. Org. Chem. 2007, 72, 8489.
(c) Zong, R.; Zhou, H.; Thummel, R. P. J. Org. Chem. 2008, 73, 4334. (d)
Powell, D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913. (e) Cho, I. S.; Gong,
L.; Muchowski, J. M. J. Org. Chem. 1991, 56, 7288. (f) Riesgo, E. C.; Jin,
X.; Thummel, R. P. J. Org. Chem. 1996, 61, 3017. (g) Wu, Y.; Liu, L.; Li,
H.; Wang, D.; Chen, Y. J. Org. Chem. 2006, 71, 6592. (h) Denmark, S. E.;
Venkatraman, S. J. Org. Chem. 2006, 71, 1668.
In 2010, the group of Jia reported the one-pot AgOAc-
mediated synthesis of polysubstituted pyrroles from alde-
hydes and anilines (Scheme 1).12 Inspired by recent studies
in synthesizing heterocyclic compounds with molecular
oxygen and simple starting materials,13 we made an un-
expected finding: the use of 2-phenylacetaldehyde and
anilines via a copper-catalyzed reaction resulted in sub-
stituted quinolines with CÀN/CÀC bond formation and
CÀH/CÀC bond cleavage reaction in one step under air.
Initially, the reaction of aniline (1a) and 2- phenylace-
taldehyde (2a) was chosen as a model reaction to optimize
the reaction. By treating the substrate 1a and 2a with 10%
CuI, 10% CF3COOH in DMF at 130 °C, to our delight, an
unexpected product 3-phenylquinoline (3aa) was obtained
(11) (a) Liang, Z.; Wu, J. Adv. Synth. Catal. 2007, 349, 1047. (b)
Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1999,
38, 3222. (c) Korivi, R. P.; Cheng, C. J. Org. Chem. 2006, 71, 7079. (d)
McNaughton, B. R.; Miller, B. L. Org. Lett. 2003, 5, 4257. (e) Zhang, Z.;
Tan, J.; Wang, Z. Org. Lett. 2008, 10, 173. (f) Wu, J. L.; Cui, X. L.; Chen,
L. M.; Jiang, G. J.; Wu, Y. J. J. Am. Chem. Soc. 2009, 131, 13888. (g)
Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.; Nakajima,
K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 576. (h) Cho, C. S.; Kim,
B. T.; Kim, T. J.; Shim, S. C. Chem. Commun. 2001, 2576. (i) Zhang, Y.;
Wang, M.; Li, P.; Wang, L. Org. Lett. 2012, 14, 2206. (j) Wang, Y.; Chen,
C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
(12) Li, Q.; Fan, A.; Lu, Z.; Cui, Y.; Lin, W.; Jia, Y. Org. Lett. 2010,
12, 4066.
(13) (a) Yan, R. L.; Huang, J.; Luo, J.; Wen, P.; Huang, G. S.; Liang,
Y. M. Synlett 2010, 7, 1071. (b) Yan, R. L.; Luo, J.; Wang, C. X.; Ma,
C. W.; Huang, G. S.; Liang, Y. M. J. Org. Chem. 2010, 75, 5395. (c) Yan,
R. L.; Yan, H.; Ma, C.; Ren, Z. Y.; Gao, X. A.; Huang, G. S.; Liang,
Y. M. J. Org. Chem. 2012, 77, 2024. (d) Yan, H.; Yan, R.; Yang, S.; Gao,
X.; Wang, Y.; Hang, G.; Liang, Y. Chem.;Asian J. 2013, 19, 4271.
B
Org. Lett., Vol. XX, No. XX, XXXX