Journal of the American Chemical Society
Article
(g) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012,
51, 775−779. Rh-catalyzed reactions: (h) Chan, W.-W.; Lo, S.-F.; Zhao,
Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565−13568. (i) Selander,
N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. J. Am.
Chem. Soc. 2012, 134, 14670−14673. (j) Hyster, T. K.; Ruhl, K. E.;
Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364−5367.
IMB8, which is 7.2 kcal/mol lower than TSB7 in the gas phase
but 1.7 kcal/mol higher than TSB7 after thermal and solvent
corrections. Finally, the product 5b is released from IMB8. The
resulting species IMB9 can facilely isomerize to a more stable
complex, IMB10, which then enters the catalyst recovery
step (Figure S6 in the Supporting Information). Similar to the
β-hydride elimination in the reaction in eq 4, the step is endergonic
by 3.5 kcal/mol and needs the thermodynamic driving force from
the catalyst recovery step.
(3) For selected examples, see: (a) Yu, W.-Y.; Tsoi, Y.-T.; Zhou, Z.;
Chan, A. S. C. Org. Lett. 2009, 11, 469−472. (b) Xiao, Q.; Ma, J.; Yang,
Y.; Zhang, Y.; Wang, J. Org. Lett. 2009, 11, 4732−4735. (c) Barluenga, J.;
́
Moriel, P.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 5587−
5590. (d) Peng, C.; Yan, G.; Wang, Y.; Jiang, Y.; Zhang, Y.; Wang, J.
Synthesis 2010, 4154−4168. (e) Chen, S.; Wang, J. Chem. Commun.
2008, 4198−4200. (f) Kudirka, R.; Devine, S. K. J.; Adams, C. S.; Van
Vranken, D. L. Angew. Chem., Int. Ed. 2009, 48, 3677−3680. (g) Zhang,
Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed.
2010, 49, 1139−1142. (h) Chen, Z.-S.; Duan, X.-H.; Wu, L.-Y.; Ali, S.; Ji,
K.-G.; Zhou, P.-X.; Liu, X.-Y.; Liang, Y.-M. Chem.Eur. J. 2011, 17,
6918−6921. (i) Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.;
Zhao, X.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 4330−4341.
(4) (a) Peng, C.; Wang, Y.; Wang, J. J. Am. Chem. Soc. 2008, 130,
1566−1567. (b) Tsoi, Y.-T.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. Org.
Lett. 2010, 12, 4506−4509. (c) Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.;
Wang, J. Chem. Commun. 2010, 46, 1724−1726. (d) Zhou, L.; Ye, F.;
Ma, J.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2011, 50, 3510−3514.
(5) Palladium carbenes have been suggested as reactive intermediates
in catalytic reactions. For examples, see: (a) Trost, B. M.; Tanoury, G. J.
J. Am. Chem. Soc. 1988, 110, 1636−1638. (b) Trost, B. M.; Hashmi, A. S.
K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1085−1087. (c) Schweizer, S.;
Song, Z.-Z.; Meyer, F. E.; Parsons, P. J.; de Meijere, A. Angew. Chem., Int.
Ed. 1999, 38, 1452−1454. (d) Nakamura, I.; Bajracharya, G. B.;
Mizushima, Y.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 4328−
4331. (e) Fillion, E.; Taylor, N. J. J. Am. Chem. Soc. 2003, 125, 12700−
12701. (f) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc. 2006, 128,
CONCLUSION
■
We have developed a palladium-catalyzed cross-coupling
reaction between ene−yne−ketones and benzyl, aryl, or allyl
bromides. These transformations represent a novel synthetic
method to produce various 2-alkenyl-substituted furans in
moderate to good yields. Moreover, computational studies
support our hypothesis that palladium carbene formation and
subsequent migratory insertion are the key steps in the catalytic
cycle. The implication of this study is that palladium carbene
migratory insertion can be considered as a general and facile
process that occurs under suitable conditions regardless of the
carbene precursors. This may open up new possibilities for
developing novel transformations based on palladium carbene
migratory insertions.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, characterization data, copies of 1H and
13C NMR spectra, and details and complete results of the DFT
calculations. This material is available free of charge via the
́
́
anier, V. E; Fillion, E. Organometallics 2007, 26,
7430−7431. (g) Trep
30−32.
(6) For studies of stable palladium carbene species, see: (a) Alben
C.; Espinet, P.; Manrique, R.; Perez-Mateo, A. Angew. Chem., Int. Ed.
2002, 41, 2363−2366. (b) Danopoulos, A. A.; Tsoureas, N.; Green, J.
C.; Hursthouse, M. B. Chem. Commun. 2003, 756−757. (c) Broring, M.;
́
iz, A.
AUTHOR INFORMATION
Corresponding Authors
■
́
̈
Brandt, C. D.; Stellwag, S. Chem. Commun. 2003, 2344−2345. (d) Sole,
́
D.; Vallverdu, L.; Solans, X.; Font-Bardia, M.; Bonjoch, J. Organo-
́
Author Contributions
metallics 2004, 23, 1438−1447. (e) Alben
Manrique, R.; Per
ez-Mateo, A. Chem.Eur. J. 2005, 11, 1565−1573.
(f) Albeniz, A. C.; Espinet, P.; Perez-Mateo, A.; Nova, A.; Ujaque, G.
Organometallics 2006, 25, 1293−1297. (g) Lopez-Alberca, M. P.;
Mancheno, M. J.; Fernandez, I.; Gomez-Gallego, M.; Sierra, M. A.;
Torres, R. Org. Lett. 2007, 9, 1757−1759. (h) Meana, I.; Albeniz, A. C.;
Espinet, P. Organometallics 2012, 31, 5494−5499.
́
iz, A. C.; Espinet, P.;
§Y.X., S.Q., and Q.X. contributed equally.
́
Notes
́
́
The authors declare no competing financial interest.
́
́
́
̃
ACKNOWLEDGMENTS
́
■
This project was supported by the National Natural Science
Foundation of China (Grant 21272010 and 21332002) and the
National Basic Research Program of China (973 Program,
2012CB821600).
(7) For selected reviews of diazo compounds, see: (a) Ye, T.;
McKervey, M. A. Chem. Rev. 1994, 94, 1091−1160. (b) Doyle, M. P.;
McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis
with Diazo Compounds; Wiley: New York, 1998. (c) Davies, H. M. L.;
Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861−2903. (d) Zhang, Z.;
Wang, J. Tetrahedron 2008, 64, 6577−6605.
REFERENCES
■
(8) For selected reviews, see: (a) Miki, K.; Uemura, S.; Ohe, K. Chem.
Lett. 2005, 34, 1068−1077. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107,
(1) For reviews, see: (a) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011,
1015−1026. (b) Barluenga, J.; Valdes
́
, C. Angew. Chem., Int. Ed. 2011,
3180−3211. (c) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007,
̈
50, 7486−7500. (c) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41, 560−
572. (d) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236−
247.
46, 3410−3449. (d) Michelet, V.; Toullec, P. Y.; Genet
̂
, J.-P. Angew.
Chem., Int. Ed. 2008, 47, 4268−4315. (e) Jimen
́
ez-Nunez, E.;
́
̃
Echavarren, A. M. Chem. Rev. 2008, 108, 3326−3350. (f) Furstner, A.
̈
(2) For most recent examples, see: Pd-catalyzed reactions: (a) Chen,
Z.-S.; Duan, X.-H.; Zhou, P.-X.; Ali, S.; Luo, J.-Y.; Liang, Y.-M. Angew.
Chem., Int. Ed. 2012, 51, 1370−1374. (b) Roche, M.; Hamze, A.; Provot,
O.; Brion, J.-D.; Alami, M. J. Org. Chem. 2013, 78, 445−454. (c) Xia, Y.;
Hu, F.; Liu, Z.; Qu, P.; Ge, R.; Ma, C.; Zhang, Y.; Wang, J. Org. Lett.
2013, 15, 1784−1787. Cu-catalyzed reactions: (d) Ye, F.; Ma, X.; Xiao,
Q.; Li, H.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2012, 134, 5742−5745.
(e) Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257−15260.
(f) Xiao, Q.; Ling, L.; Ye, F.; Tan, R.; Tian, L.; Zhang, Y.; Li, Y.; Wang, J.
J. Org. Chem. 2013, 78, 3879−3885. Ni- and Co-catalyzed reactions:
Chem. Soc. Rev. 2009, 38, 3208−3221. For a related report on
palladium-catalyzed cycloisomerization of terminal allenyl ketones for
the synthesis of furans, see: (g) Hashmi, A. S. K.; Ruppert, T. L.; Knofel,
̈
T.; Bats, J. W. J. Org. Chem. 1997, 62, 7295−7304.
(9) (a) Ohe, K.; Yokoi, T.; Miki, K.; Nishino, F.; Uemura, S. J. Am.
Chem. Soc. 2002, 124, 526−527. (b) Ohe, K.; Yokoi, T.; Miki, K.;
Nishino, F.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260−5261.
(c) Kato, Y.; Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. Org. Lett. 2003, 5,
2619−2621. (d) Miki, K.; Yokoi, T.; Nishino, F.; Kato, Y.; Washitake, Y.;
I
dx.doi.org/10.1021/ja4058844 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX