selectivity and rate acceleration are achieved through
proximity effects.7 This is an ideal mechanism for site-
selective catalysis, because acceleration is directly linked to
the structural arrangement of the functional groups. Be-
cause proximity effects can result in orders of magnitude of
rate acceleration, differentiation of groups that have simi-
lar reactivity and even the functionalization of inherently
less reactive sites is possible.8
Table 1. Optimization of D-Uridine Silylationa
equiv
conversion
(%)c
entry
catalyst
TBSCl/DIPEA
2a:3ad
1
20% NMI
1.5/2.0
1.5/2.0
1.5/2.0
1.5/2.0
2.0/1.5
2.0/1.5
2.0/1.5
71:29
98:2
98:2
45:55
98:2
98:2
98:2
100
2
20% (ꢀ)-4a
20% (ꢀ)-4b
20% (ꢀ)-5
20% (ꢀ)-4b
10% (ꢀ)-4b
5% (ꢀ)-4b
70
3
72
4
45
5b
6b
7b
100
Figure 1. Design of scaffolding catalysts.
100 (93)e
88 (84)e
Most recently we applied scaffolding catalysts to the
derivatization of monosaccharides and natural products.9
In this manuscript we apply the catalyst to the selective
functionalization of ribonucleosides.10 Ribonucleosides
are the core building blocks for RNA and also serve as
templates for the development of therapeutics, in particu-
lar antiviral agents.11 Beyond RNA’s traditional role in
protein expression (i.e., tRNA and mRNA), RNA has
been found to be critical in gene regulation through
riboswitches12 and RNAi.13 These discoveries have led to
an explosion in the use of synthetic RNA as potential
therapeutics14 as well as tools for the biological sciences.
Although the expectation would be that RNA and DNA
synthesis would be similar, the additional 20-hydroxyl adds
a layer of complexity to the synthesis of RNA and deriva-
tives, because this hydroxyl has to be differentiated from
the 30-position. Current automated methods for RNA
synthesis require that the 20-hydroxyl be protected. One
of the most popular protecting groups used with the RNA
monomers is a tert-butyldimethylsilyl (TBS) group due to
its chemical orthogonality. The current synthesis of these
a Reactions performed at 0.2 M of 1a with 3 mol % DIPEAꢀHCl.
using trimethoxybenzene as an internal standard. d Ratio was deter-
mined by 1H NMR. e Isolated yield.
1
b Reactions run at 1.0 M of 1a. c Conversion determined by H NMR
monomers requires either an unselective silylation of the 20
and 30 positions followed by separation of the isomers15 or
a multistep protecting group sequence.16 Given the in-
creasing importance of RNA synthesis, we have devised a
simple one-step procedure that provides the desired mono-
mers in high yield and selectivity for all the natural
ribonucleosides. Moreover, switching to the opposite en-
antiomer of the catalyst enables the selective protection of
the 30-hydroxyl, which can be potentially used in the
synthesis of unnatural ribonucleosides.
We initially investigated site-selective functionalization
of uridine using TBSCl as the electrophile.17 As a control
reaction, we employed N-methylimidazole (NMI) as the
catalyst, and similar to previous reports15c the product
forms in a 71:29 ratio of the silylated C20ꢀOH:C30ꢀOH
(2a:3a, Table 1 entry 1). Using scaffolding catalyst (ꢀ)-4a
or (ꢀ)-4b18 results in a dramatic improvement in selectivity
to 98:2 with more moderate conversion (∼70%, Table 1,
entries 2 and 3). To test for the necessity of covalent
bonding to (ꢀ)-4b, an additional control reaction was
(7) (a) Page, M. I.; Jencks, W. P. Proc. Natl. Acad. Sci. U.S.A. 1971,
68, 1678–1683. (b) Pascal, R. Eur. J. Org. Chem. 2003, 1813–1824.
(8) Worthy, A. D.; Sun, X.; Tan, K. L. J. Am. Chem. Soc. 2012, 134,
7321–7324.
(9) Sun, X.; Lee, H.; Lee, S.; Tan, K. L. Nat. Chem. 2013, 5, 790–795.
(10) (a) Somoza, A. Chem. Soc. Rev. 2008, 37, 2668–2675. (b) Zewge,
D.; Gosselin, F.; Sidler, R.; DiMichele, L.; Cvetovich, R. J. J. Org.
Chem. 2010, 75, 5305–5307.
(16) Erlacher, M. D.; Lang, K.; Wotzel, B.; Rieder, R.; Micura, R.;
Polacek, N. J. Am. Chem. Soc. 2006, 128, 4453–4459.
(11) (a) Butler, M. S. Nat. Prod. Rep. 2008, 25, 475–516. (b) Leyssen,
P.; De Clercq, E.; Neyts, J. Antivir. Res. 2008, 78, 9–25.
(12) Serganov, A.; Nudler, E. Cell 2013, 152, 17–24.
(13) Kurreck, J. Angew. Chem., Int. Ed. 2009, 48, 1378–1398.
(14) (a) Kim, D. H.; Rossi, J. J. Nat. Rev. Genet. 2007, 8, 173–184. (b)
Keefe, A. D.; Pai, S.; Ellington, A. Nat. Rev. Drug Discovery 2010, 9,
537–550. (c) Davidson, B. L.; McCray, P. B. Nat. Rev. Genet. 2011, 12,
329–340.
(15) (a) Hakimelahi, G. H.; Proba, Z. A.; Ogilvie, K. K. Tetrahedron
Lett. 1981, 22, 4775–4778. (b) Hakimelahi, G. H.; Proba, Z. A.; Ogilvie,
K. K. Tetrahedron Lett. 1981, 22, 5243–5246. (c) Hakimelahi, G. H.;
Proba, Z. A.; Ogilvie, K. K. Can. J. Chem. 1982, 60, 1106–1113. (d)
MatulicAdamic, J.; Beigelman, L.; Portmann, S.; Egli, R.; Usman, N.
J. Org. Chem. 1996, 61, 3909–3911. (e) Song, Q.; Wang, W.; Fischer, A.;
Zhang, X.; Gaffney, B. L.; Jones, R. A. Tetrahedron Lett. 1999, 40,
4153–4156.
(17) For examples of catalyzed silyl transfer, see: (a) Isobe, T.;
Fukuda, K.; Araki, Y.; Ishikawa, T. Chem. Commun. 2001, 243–244.
(b) Rendler, S.; Auer, G.; Oestreich, M. Angew. Chem., Int. Ed. 2005, 44,
7620–7624. (c) Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L.
Nature 2006, 443, 67–70. (d) Zhao, Y.; Mitra, A. W.; Hoveyda, A. H.;
Snapper, M. L. Angew. Chem., Int. Ed. 2007, 46, 8471–8474. (e) You, Z.;
Hoveyda, A. H.; Snapper, M. L. Angew. Chem., Int. Ed. 2009, 48, 547–
550. (f) Weickgenannt, A.; Mewald, M.; Muesmann, T. W. T.; Oestreich,
M. Angew. Chem., Int. Ed. 2010, 49, 2223–2226. (g) Weickgenannt, A.;
Mewald, M.; Oestreich, M. Org. Biomol. Chem. 2010, 8, 1497–1504.
(h) Rodrigo, J. M.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Org. Lett.
2011, 13, 3778–3781. (i) Sheppard, C. I.; Taylor, J. L.; Wiskur, S. L. Org.
Lett. 2011, 13, 3794–3797. (j) Sun, X.; Worthy, A. D.; Tan, K. L. Angew.
Chem., Int. Ed. 2011, 50, 8167–8171. (k) Giustra, Z. X.; Tan, K. L. Chem.
Commun. 2013, 49, 4370–4372.
(18) Catalysts 4a and 4b are available at Strem Chemicals.
Org. Lett., Vol. 15, No. 18, 2013
4711