reported the first example of β-arylation of carboxylic
derivatives and γ-arylation of amine derivatives by using
8-aminoquinolinyl or picolinyl directing groups with aryl
iodides.6 Corey has achieved arylation of sp3 CÀH bonds
in amino acid derivatives with a similar strategy.7 Chen,
Chatani, and other groups made significant contributions
to achieve a number of “unreactive” sp3 CÀH function-
alizations, including arylation/alkenylation/alkynylation/
alkylation with the corresponding organic halides.8
As mentioned above, aryl halides have been broadly
and successfully used as electrophiles to achieve sp3 CÀH
arylation. However, arylhyperiodonium salts, which gen-
erally showed higher reactivity, have never been used to
approach direct arylation of “unreactive” sp3 CÀH bonds
although they exhibited great stability, availability, elec-
trophilicity, and lower toxicity, as well as the application
of sp2 CÀH arylation.9,10 Because of its highly electron-
deficient nature and hyperleaving group ability, this re-
agent might provide the convenient and efficient arylation
of sp3 CÀH bonds, especially for the more challenging
secondary CÀH bonds. Herein, we demonstrate the first
successful example to approach direct arylation of primary
and secondarysp3 CÀH bonds usingdiarylhyperiodonium
salts as arylation reagents.
Table 1. Optimization Studies for Pd-Catalyzed sp3 CÀH Bond
Arylationa
entry
catalyst
Pd(OAc)2
base
solvent
yieldb (%)
1
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
Cs2CO3
K3PO4
ClCH2CH2Cl
toluene
72
16
2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(IPr)Cl2
Pd2(dba)3
Pd(TFA)2
Pd(dba)2
3
DMF
<10
<10
14
4
THF
5
dioxane
6
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
68
7
75
8
17
9
Na2CO3
65
10
11
12
13
14
15
16
17
18
19
Cu(OAc)2 ClCH2CH2Cl
52
KOtBu
K2CO3
K2CO3
K2CO3
K2CO3
ClCH2CH2Cl
ClCH2CH2Cl
C1CH2CH2C1
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
<10
19
18
16
According to previous reports in the field of CÀH
activation via Pd catalysis,5À8,11 we first tested direct ary-
lation of a steric hindered benzylic sp3 CÀH bond of N-3-
phenylpropoyl-8-aminoquinoline with diarylhyperiodo-
nium salts in the presence of Pd catalysts (Table 1). Among
<10
86 (82)c
<10
11
Pd(SIMes)(OAc)2 K2CO3
PdCl2(dppp K2CO3
Pd(MeCN)4(BF4)2 K2CO3
PdCl2 K2CO3
)
<10
a The reactions were conducted with 0.10 mmol of 1a, 0.12 mmol of
2a, 0.005 mmol of catalyst, 0.12 mmol of base, and 1.0 mL of solvent and
stirred for 24 h unless otherwise noted. b Determined by crude 1H NMR
spectroscopy. c Yield of isolated product.
(6) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154. (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2010, 132, 3965. (c) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012,
134, 7. (d) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012,
134, 18237. (e) Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51,
5188. (f) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed.
2013, 52, 6043.
various solvents, ClCH2CH2Cl exhibited the best efficacy,
and the desired product 3aa was observed in a good yield
onlyinthe presenceof K2CO3 asthebasewithPd(OAc)2 as
the catalyst (entries 1À5). After screening the different
bases, we found that the carbonates could sharply promote
this transformation (entries 6À11).12 In the absence of
bases, the efficacy of arylation was obviously reduced
(entry 8). Phosphates and acetates could accelerate the
reaction, although they were not comparable with carbo-
nates (entries 7 and 9). Notably, such an arylation is not
sensitive to both moisture and air; thus, they can be
conveniently carried out with commercially available sol-
vents. Notably, the starting material 1a was not completely
consumed in the presence of Pd(OAc)2, and the efficiency
could not be enhanced by simply lengthening the reaction
time and/or raising the temperature. Considering the
possible deactivation of the catalysts, we tested the cata-
lysts with the support of a different ligand set (entries
12À19). To our delight, Pd(SIMes)(OAc)2 (SIMes =1,3-
bis(2,4,6-trimethylphenyl)imidazol-2-ylidane) resultedin a
significant promotion, and the desired product 3aa was
obtained in 82% isolated yield (Table 1, entry 16).12 Under
(7) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8,
3391.
(8) (a) He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem.
Soc. 2012, 134, 3. (b) Zhang, S.-Y.; He, G.; Zhao, Y.; Wright, K.; Nack,
W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313. (c) He, G.; Lu, C.;
Zhao, Y.; Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2944. (d) Ano, Y.;
Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984. (e) Aihara,
Y.; Chatani, N. Chem. Sci 2013, 4, 664. (f) Rit, R. K.; Yadav, M. R.;
Sahoo, A. K. Org. Lett. 2012, 14, 3724. (g) Rodrıguez, N.; Romero-
´
ꢀ
ꢀ
Revilla, J. A.; Fernandez-Ibanez, M. A.; Carretero, J. C. Chem. Sci 2013,
4, 175. (h) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.-S.; Li, Q.; Chen,
G. J. Am. Chem. Soc. 2013, 135, 2124.
(9) For benzylic C(sp3)ÀH bond arylation using diarylhyperiodo-
nium salts, see: Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S.
J. Am. Chem. Soc. 2005, 127, 7330.
(10) For selected reviews on diarylhyperiodonium salts, see: (a)
Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
For selected Cu-catalyzed arylation with diarylhyperiodonium salts, see:
(b) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 8172. (c) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (d)
Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 4260. (e)
Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt, M. J.
J. Am. Chem. Soc. 2012, 134, 10773. For selected Pd-catalyzed arylation
with diarylhyperiodonium salts, see: (f) Deprez, N. R.; Sanford, M. S.
J. Am. Chem. Soc. 2009, 131, 11234. (g) Xiao, B.; Fu, Y.; Xu, J.; Gong,
T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.
(11) (a) Gu, P.; Huang, S.; Xu, J.; Shi, Z.-J.; Su, W.-P. Angew. Chem.,
Int. Ed. 2011, 50, 9926. (b) Li, Y.; Wang, W.-H.; He, K.-H.; Shi, Z.-J.
Organometallics 2012, 31, 4397. (c) Li, H.; Zhu, R.-Y.; Shi, W.-J.; He,
K.-H.; Shi, Z.-J. Org. Lett. 2012, 14, 4850. (d) Zhang, L.-S.; Chen, K.;
Chen, G.-H.; Li, B.-J.; Luo, S.; Guo, Q.-Y.; Wei, J.-B.; Shi, Z.-J. Org.
Lett. 2013, 15, 10. (e) Yang, M.-Y.; Jiang, X.-Y.; Shi, W.-J.; Zhu, Q.-L.;
Shi, Z.-J. Org. Lett. 2013, 15, 690.
(12) For a review on base effects, see: Ouyang, K.-B.; Xi, Z.-F. Acta
Chimica Sinica 2013, 71, 13.
Org. Lett., Vol. 15, No. 18, 2013
4759