European Journal of Organic Chemistry
10.1002/ejoc.201601003
COMMUNICATION
Keywords: asymmetric catalysis • dearomatization •
photocatalysis • polycycles • radical reactions
[1]
[2]
R. Ciochina, R. B. Grossman, Chem. Rev. 2006, 106, 3963.
a) I. P. Singh, J. Sidana, S. B. Bharate, W. J. Foley, Nat. Prod. Rep.
2010, 27, 393; b) J.-A. Richard, R. H. Pouwer, D. Y.-K. Chen, Angew.
Chem. Int. Ed. 2012, 51, 4536; c) J. H. Boyce, J. A. Porco, Jr., Angew.
Chem. Int. Ed. 2014, 53, 7832; d) S. J. Spessard, B. M. Stoltz, Org. Lett.
2002, 4, 1943; e) F. Horeischi, N. Biber, B. Plietker, J. Am. Chem. Soc.
2014, 136, 4026; f) B. A. Sparling, D. C. Moebius, M. D. Shair, J. Am.
Chem. Soc. 2012, 135, 644; g) M. Uwamori, A. Saito, M. Nakada, J.
Org. Chem. 2012, 77, 5098.
Scheme 5. Further reactions of scaffold 7a
[3]
[4]
Q. Zhang, J. A. Porco, Jr., Org. Lett. 2012, 14, 1796.
Conclusions
Q. Zhang, B. Mitasev, J. Qi, J. A. Porco, Jr., J. Am. Chem. Soc. 2010,
132, 14212.
In summary, we have established a new strategy for generating
unique enantioenriched mono- and polycyclic chemotypes.
Highly enantioselective cinnamylation of
[5]
[6]
a) M. D. Burke, S. L. Schreiber, Angew. Chem. Int. Ed. 2004, 43, 46; b)
S. L. Schreiber, Science. 2000, 287, 1964.
a
phloroglucinol
A. Trabocchi, S. L. Schreiber in Diversity-Oriented Synthesis; Basics
and Applications in Organic Synthesis, Drug Discovery, and Chemical
Biology, Wiley-VCH, Weinheim, 2013.
scaffold provided dearomatized substrates which were
converted by divergent cyclizations to structures including
tricyclo[4.3.1.01,4]decan-10-ones and bicyclo[3.2.1]heptanones.
The polycyclic chemotypes were ring-opened to afford highly
substituted 7-membered products. Preliminary computational
studies indicated the potential for interesting pre-organizing
intramolecular interactions between the ligand/Pd0/substrate
complex and the incoming enolate nucleophile. Studies
exploring further intramolecular transformations of the
dearomatized scaffolds, as well as rigorous computational
examination of the asymmetric allylic alkylation using transition
state calculations, are currently in progress and will be reported
in due course.
[7]
[8]
C.-X. Zhuo, S.-L. You, Angew. Chem. Int. Ed. 2013, 52, 10056.
A screen of Li2CO3, K2CO3 and DBU as bases afforded no improvement,
with all bases delivering similar % ee in lower yields.
[9]
CCDC 1487867 (6a) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge
Crystallographic
Data
Centre
via
[10] a) B. M. Trost, M. R. Machacek, A. Aponick, Acc. Chem. Res. 2006, 39,
747. b) B. M. Trost, J. Xu, T. Schmidt, J. Am. Chem. Soc. 2009, 131,
18343. c) B. M. Trost, R. N. Bream, J. Xu, Angew. Chem. Int. Ed. 2006,
45, 3109. d). B. M. Trost, J. Xu, J. Am. Chem. Soc. 2005, 127, 17180.
[11] C. P. Butts, E. Filali, G. C. Lloyd-Jones, P.-O. Norrby, D. A. Sale, Y.
Schramm, J. Am. Chem. Soc. 2009, 131, 9945.
[12] Y. Zhu, D. G. Drueckhammer, J. Org. Chem. 2005, 70, 7755.
[13] See Supporting Information for details.
Experimental Section
[14] J. A. Keith, D. C. Behenna, N. Sherden, J. T. Mohr, S. Ma, S. C.
Marinescu, R. J. Nielsen, J. Oxgaard, B. M. Stoltz, W. A. Goddard III, J.
Am. Chem. Soc. 2012, 134, 19050.
Full experimental details for the preparation of the compounds described
herein, as well as details related to computational and mechanistic
experiments, are provided in the Supporting Information.
[15] J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828.
[16] G. J. Choi, R. R. Knowles, J. Am. Chem. Soc. 2015, 137, 9226.
[17] a) A. C. Weedon in CRC Handbook of Organic Photochemistry and
Photobiology (Eds.: W. M. Horspool, P.-S. Song), CRC Press, Boca
Raton, 1995, pp 670-684. b) M. D. Karkas, J. A. Porco, Jr., C. R. J.
Stephenson. Chem. Rev. 2016, 116, ASAP.
Acknowledgements
[18] a) Z. Lu, T. P. Yoon, Angew. Chem. Int. Ed. 2012, 51, 10329; (b) A. E.
Hurtley, Z. Lu, T. P. Yoon, Angew. Chem. Int. Ed. 2014, 53, 8991.
We thank Otsuka Pharmaceuticals Co.Ltd. for research support.
We thank Dr. Jeffrey Bacon (BU) for X-ray crystal structure
analysis. NMR (CHE-0619339) and MS (CHE-0443618) facilities
at BU are supported by the National Science Foundation. Work
at the BU-CMD is supported by National Institute of Health
R24GM111625. We thank Prof. Alex Grenning (U. Florida) and
Prof. Robert Knowles (Princeton) for helpful discussions.
[19]
a) B. Mitasev, J. A. Porco, Jr. Org. Lett. 2009, 11, 2285; b) J. H.
George, M. D. Hesse, J. E. Baldwin, R. M. Adlington, Org. Lett. 2010,
12, 3532. c) N. S. Simpkins, M. D. Weller, Tetrahedron Lett. 2010, 51,
4823.
[20]
C. J. Hayes, N. S. Simpkins, Org. Biomol. Chem., 2013, 11, 8458.
This article is protected by copyright. All rights reserved