Enantioselective Synthesis of (+)-Ancepsenolide
c) K. Kobayashi, H. Naka, A. E. H. Wheatley, Y. Kondo, Org.
Lett. 2008, 10, 3375–3377.
[8] E. Lattmann, H. M. R. Hoffmann, Synthesis 1996, 155.
[9] a) G. Jas, Synthesis 1991, 965–966; b) J. Boukouvalas, N. Lach-
ance, Synlett 1998, 1, 31–32; c) Z. Xin, G. Z. Zheng, A. O. Ste-
wart, Synlett 2000, 9, 1324–1326; d) E. M. Beccali, E. Erba, P.
Trimarco, Synth. Commun. 2000, 30, 629–641.
[10] a) J. S. Clark, F. Marlin, B. Nay, C. Wilson, Org. Lett. 2003, 5,
89–92; b) J. S. Clark, J. M. Northall, F. Marlin, B. Nay, C. Wil-
son, A. J. Blake, M. J. Waring, Org. Biomol. Chem. 2008, 6,
4012–4025; c) R. J. Duffy, K. A. Morris, R. Vallakati, W.
Zhang, D. Romo, J. Org. Chem. 2009, 74, 4772–4781; d) J. Bou-
kouvalas, L. C. McCann, Tetrahedron Lett. 2010, 51, 4636–
4639; e) J. Boukouvalas, J. C. McCann, Tetrahedron Lett. 2011,
52, 1202–1204.
solution of NaHCO3, and brine. The organic phase was dried
(MgSO4), filtered, and concentrated in vacuo. The crude was puri-
fied by flash chromatography (cyclohexane/EtOAc, 6:4) to yield
compound 5.
Supporting Information (see footnote on the first page of this arti-
cle): General remarks, compound characterization data, and NMR
spectra of all products.
Acknowledgments
This work was supported by the Ministère Délégué à l’Enseigne-
ment Supérieur et à la Recherche (Grant to C. G. and J. K.).
[11] a) W. Cabri, S. De Bernardinis, F. Francalanci, S. Penco, R. J.
Santi, Org. Chem. 1990, 55, 350–353; b) I. Chiarotto, I. Carelli,
S. Cacchi, P. Pace, J. Electroanal. Chem. 1995, 385, 235–239; c)
H. Kotsuki, P. K. Datta, H. Hayakawa, H. Suenaga, Synthesis
1995, 1348–1350.
[12] S. P. Water, Y. Tian, Y. M. Li, S. J. Danishefsky, J. Am. Chem.
Soc. 2005, 127, 13514–13515.
[1] a) J. Boukouvalas, R. P. Loach, J. Org. Chem. 2008, 73, 8109–
8112 and references cited therein; b) N. D. Griggs, A. J. Phil-
ipps, Org. Lett. 2008, 10, 4955–4957; c) H.-X. Liu, F. Shao, G.-
Q. Li, G.-L. Xun, Z.-J. Yao, Chem. Eur. J. 2008, 14, 8632–8639;
d) J. L. J. McLaughlin, Nat. Prod. 2008, 71, 1311–1321.
[2] a) D. H. Davies, E. W. Snape, P. J. Suter, T. J. King, C. P. J. Fal-
shaw, Chem. Soc. Chem. Commun. 1981, 1073; b) A. Nowak,
B. Steffan, Liebigs Ann./Recl. 1997, 1817.
[13] B. M. Trost, T. J. J. Müller, J. Am. Chem. Soc. 1994, 116, 4985–
4986 and the references cited herein.
[3] D. W. Knight, Contemp. Org. Synth. 1994, 1, 287–315.
[4] a) S. Tisserand, R. Baati, M. Nicolas, C. Mioskowski, J. Org.
Chem. 2004, 69, 8992–8983; b) L. J. Haynes, J. W. M. Jamieson,
J. Chem. Soc. 1958, 4132–4135; c) T. P. C. Mulholland, R. Fos-
ter, D. B. Haydock, J. Chem. Soc. Perkin Trans. 1 1972, 1225–
1231; d) J. L. Bloomer, F. E. Kappler, Tetrahedron Lett. 1973,
14, 163–164; e) J. L. Bloomer, F. E. Kappler, J. Org. Chem.
1974, 39, 113; f) R. C. F. Jones, S. Sumaria, Tetrahedron Lett.
1978, 19, 3173–3176; g) K. Tanaka, K. Matsuo, Y. Nakaizumi,
[14] a) M. Leboeuf, A. Cavé, P. K. Bhaumik, B. Mukherjee, R. Mu-
kheyie, Phytochemistry 1982, 21, 2783; b) J. K. Rupprecht, Y.-
H. Hui, J. L. McLaughlin, J. Nat. Prod. 1990, 53, 237; c) X.
Fang, M. J. Rieser, Z. Gu, G. Zhao, J. L. McLaughlin, Phyto-
chem. Anal. 1993, 4, 27.
[15] K. Takai, R. Iriye, Biosci. Biotechnol. Biochem. 2001, 65, 1903–
1906.
[16] M. D. Fryzuk, B. Bosnich, J. Am. Chem. Soc. 1978, 100, 5491–
5494.
Y. Morioka, Y. Takashita, Y. Tachibana, Y. Sawamura, S. [17] S. Brandänge, L. Flodman, A. Norberg, J. Org. Chem. 1984,
Kohda, Chem. Pharm. Bull. 1979, 27, 1901–1906. 49, 927–928.
[5] a) N. G. Clemo, G. Pattenden, Tetrahedron Lett. 1982, 23, 585– [18] We tested different reductive conditions on model substrate 4a:
588; b) O. Miyata, R. R. Schmidt, Tetrahedron Lett. 1982, 23,
1793–1796; c) K. Takeda, H. Kubo, T. Koizumi, E. Yoshii, Tet-
rahedron Lett. 1982, 23, 3175–3178.
Pd(OAc)2/PPh3/HCO2H/Et3N, DMF, 40 °C, 5 h (5a obtained
in 94% of yield); Pd(OAc)2/dppp/(TES)H, DMF, 60 °C, 5 h
(5a, 52%); Pd(OAc)2/dppp/(TMS)3SiH, DMF, 60 °C, 5 h (5a,
40%); Pd(OAc)2/dppp/(TMS)3SiH, DMF, 60 °C, 24 h (5a,
44%); Pd(OAc)2/dppp/PMHS, DMF, 60 °C, 5 h (5a, 57%);
Pd(OAc)2/dppp/PMHS, DMF, 60 °C, 24 h (5a, quant.). The
last conditions afforded desired reduced compound 5a in quan-
titative yield. These conditions were then applied to butenolide
10 in the last step of the synthesis of (+)-ancepsenolide (11).
Received: April 7, 2011
[6] a) K. Nomura, K. Hori, M. Arai, E. Yoshii, Chem. Pharm.
Bull. 1987, 35, 4368–4371; b) F. S. Pashkovskii, Y. M. Katok,
T. S. Khlebnikova, E. V. Koroleva, F. A. Lakhvich, Russ. J.
Org. Chem. 2003, 39, 998–1009; c) S. Goncalves, M. Nicolas,
A. Wagner, R. Baati, Tetrahedron Lett. 2010, 51, 2348–2350.
[7] a) J. A. Marshall, M. A. Wolf, E. M. Wallace, J. Org. Chem.
1997, 62, 367–371; b) J. Boukouvalas, P. P. Beltran, N. Lach-
ance, S. Côté, S. Maltais, M. Pouliot, Synlett 2007, 2, 219–222;
Published Online: May 18, 2011
Eur. J. Org. Chem. 2011, 3416–3419
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3419