2-SUBSTITUTED 9,10-ANTHRAQUINONES
3371
condensation of dilithiated N-methylbenzamide with anthraquinones: Access to
the diphenylanthracenic structure. Tetrahedron Lett. 1991, 32, 3845–3846; (c) Huang,
H.-S.; Huang, K.-F.; Li, C.-L.; Huang, Y.-Y.; Chiang, Y.-H.; Huang, F.-C.; Lin, J.-J.
Synthesis, human telomerase inhibition, and anti-proliferative studies of a series of
2,7-bis-substituted amido-anthraquinone derivatives. Bioorg. Med. Chem. 2008, 16,
6976–6986; (d) Diaz, M. C.; Illescas, B. M.; Seoane, C.; Martin, N. Synthesis and
electron-donor ability of the first conjugated p-extended tetrathiafulvalene dimers.
J. Org. Chem. 2004, 69, 4492–4499.
3. For the reviews of the related compounds with the skeleton of naphthoquinone, see (a)
Piggot, M. J. Naphtho[2,3-c]furan-4,9-diones and related compounds: Theoretically
interesting and bioactive natural and synthetic products. Tetrahedron 2005, 61, 9929–
9954; (b) Brimble, M. A.; Nairn, M. R.; Prabaharan, H. Synthetic strategies towards
pyranonaphthoquinone antibiotics. Tetrahedron 2000, 56, 1937–1992; (c) Jacobs, J.;
Tehrani, K. A.; De Kimpe, N. A survey of synthetic routes towards 2-azaanthraquinones.
Tetrahedron 2011, 66, 9459–9471; (d) Ibis, C.; Tuyun, A. F.; Ozsoy-Gunes, Z.; Bahar, H.;
Stasevych, M. V.; Musyanovych, R. Y.; Komarovska-Porokhnyavets, O.; Novikov, V.
Synthesis and biological evaluation of novel nitrogen- and sulfur-containing hetero-
1,4-naphthoquinones as potent antifungal and antibacterial agents. Eur. J. Med. Chem.
2011, 46, 5861–5867.
4. (a) Cava, M. P.; Ahmed, Z.; Benfaremo, N.; Murphy, R. A.; Malley Jr., G. J. O.
Anthraquinone dye intermediates as precursors of aklavinone-type anthracyclinones.
Tetrahedron 1984, 40, 4767–4776; (b) Rao, J. A.; Cava, M. P. A new route to annelated
dihydrofurofurans: Synthesis of 6,8-dideoxyversicolorin A. J. Org. Chem. 1989, 54,
2751–2753; (c) Hauser, F. M.; Hawawasam, P. Regio- and stereospecific syntheses of
4-deoxyadriamycinone and 4,6-dideoxyadriamycinone from a common intermediate. J.
Org. Chem. 1988, 53, 4515–4519.
5. For reviews on the Huisgen 1,3-dipolar cycloaddition, see (a) Bock, V. D.; Hiemstra, H.;
van Maarrseveen, J. H. CuI-catalyzed alkyne–azide ‘‘click’’ cycloadditions from
a mechanistic and synthetic perspective. Eur. J. Org. Chem. 2006, 51–68; (b) Moses,
J. E.; Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev.
2007, 36, 1249–1262; (c) Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Click chemistry
beyond metal-catalyzed cycloaddition. Angew. Chem., Int. Ed. 2009, 48, 4900–4908; (d)
Amblard, F.; Cho, J. H.; Schinazi, R. F. Cu(I)-catalyzed huisgen azideꢃalkyne 1,3-dipolar
cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem.
Rev. 2009, 109, 4207–4220; (e) Moorhouse, A. D.; Moses, J. E. Click chemistry and
medicinal chemistry: A case of ‘‘cyclo-addiction.’’ ChemMedChem 2008, 3, 715–723; (f)
Angell, Y. L.; Burgess, K. Peptidomimetics via copper-catalyzed azide–alkyne
cycloadditions. Chem. Soc. Rev. 2007, 36, 1674–1689; (g) do Nascimento, W. S.; Camara,
C. A.; de Oliveira, R. N. Synthesis of 2-(1H-1,2,3-triazol-1-yl)-1,4-naphthoquinones from
2-azido-1,4-naphthoquinone and terminal alkynes. Synthesis 2011, 3220–3224.
6. (a) Tornoe, C. W.; Christennsen, C.; Meldal, M. Peptidotriazoles on solid phase:
[1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of
terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064; (b) Rostovtsev, V. V.;
Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise huisgen cycloaddition process:
copper(I)-catalyzed regioselective ‘‘ligation’’ of azides and terminal alkynes. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599.
7. Scholl, R.; Potschiwauscheg, J.; Lenko, J. Synthetische Versuche in der Pyranthronreihe.
Monatsh. Chem. 1911, 32, 687–710.
8. (a) Bi, N.-M.; Ren, M.-G.; Song, Q.-H. Photo-Ritter reaction of arylmethyl bromides
in acetonitrile. Synth. Commun. 2010, 40, 2617–2623; (b) Nanayakkara, N. P. D.;
Schrader, K. K. Synthesis of water-soluble 9,10-anthraquinone analogues with potent