Page 5 of 6
Journal of the American Chemical Society
Yeung, H. Y. Radial hetero[5]catenanes: peripheral isomer sequences of the
chiral HPLC, NMR, MS, and X-ray crystallography data (PDF).
interlocked macrocycles. Angew. Chem. Int. Ed. 2019, 58, 17375–17382.
(5) Ishiwari, F.; Nakazono, K.; Koyama, Y.; Takata, T. Induction of
single handed helicity of polyacetylenes using mechanically chiral
rotaxanes as chiral sources. Angew. Chem. Int. Ed. 2017, 56, 14858−14862.
(6) Kameta, N.; Nagawa, Y.; Karikomib, M.; Hiratani, K. Chiral sensing
for amino acid derivative based on a [2]rotaxane composed of an
asymmetric rotor and an asymmetric axle. Chem. Commun. 2006,
3714−3716.
1
2
3
4
5
6
7
8
Crystallographic data for 13 (CIF).
AUTHOR INFORMATION
Corresponding Author
*david.leigh@manchester.ac.uk
(7) Heard, A.; Goldup, S. M. Synthesis of a mechanically planar chiral
rotaxane ligand for enantioselective catalysis. Chem 2020, 6, 994−1006.
(8) Glen, P. E.; O'Neill, J. A. T.; Lee, A.-L. Synthesis of a C1-symmetric
Box macrocycle and studies towards active-template synthesis of
mechanically planar chiral rotaxanes. Tetrahedron 2013, 69, 57−68.
(9) (a) Yamamoto, C.; Okamoto, Y.; Schmidt, T.; Jӓger, R.; Vögtle, F.
Enantiomeric resolution of cycloenantiomeric rotaxane, topologically
chiral catenane, and pretzel-shaped molecules:ꢀ Observation of pronounced
circular dichroism. J. Am. Chem. Soc. 1997, 119, 10547−10548. (b)
Schalley, C. A.; Beizai, K.; Vögtle, F. On the way to rotaxane-based
molecular motors: Studies in molecular mobility and topological chirality.
Acc. Chem. Res. 2001, 34, 465−476. (c) Kameta, N.; Hiratani, K.; Nagawab,
Y. A novel synthesis of chiral rotaxanes via covalent bond formation.
Chem. Commun. 2004, 466−467. (d) Hirose, K.; Ukimi, M.; Ueda, S.;
Onoda, C.; Kano, R.; Tsuda, K.; Hinohara, Y.; Tobe, Y. The asymmetry is
derived from mechanical interlocking of achiral axle and achiral ring
components –Syntheses and properties of optically pure [2]rotaxanes.
Symmetry 2018, 10, 20. (e) Gell, C. E.; McArdle-Ismaguilov, T. A.; Evans,
N. H. Modulating the expression of chirality in a mechanically chiral
rotaxane. Chem. Commun. 2019, 55, 1576−1579. (f) Gaedke, M.; Witte, F.;
Anhäuser, J.; Hupatz, H.; Schröder, H. V.; Valkonen, A.; Rissanen, K.;
Lützen, A.; Paulus, B.; Schalley, C. A. Chiroptical inversion of a planar
chiral redox-switchable rotaxane. Chem. Sci. 2019, 10, 10003−10009.
(10) Bordolli, R.; Goldup, S. M. An efficient approach to mechanically
planar chiral rotaxanes. J. Am. Chem. Soc. 2014, 136, 4817−4820.
(11) Jinks, M. A.; de Juan, A.; Denis, M.; Fletcher, C. J.; Galli, M.;
Jamieson, E. M. G.; Modicom, F.; Zhang, Z.; Goldup, S. M. Stereoselective
synthesis of mechanically planar chiral rotaxanes. Angew. Chem. Int. Ed.
2018, 57, 14806−14810.
(12) Makita, Y.; Kihara, N.; Nakakoji, N.; Takata, T.; Inagaki, S.;
Yamamoto, C.; Okamoto, Y. Catalytic asymmetric synthesis and optical
resolution of planar chiral rotaxane. Chem. Lett. 2007, 36, 162−163.
(13) De Bo, G.; Dolphijn, G.; McTernan, C. T.; Leigh, D. A. [2]Rotaxane
formation by transition state stabilization. J. Am. Chem. Soc. 2017, 139,
8455−8457.
(14) (a) Fielden, S. D. P.; Leigh, D. A.; McTernan, C. T.; Pérez-
Saavedra, B.; Vitorica-Yrezabal, I. J. Spontaneous assembly of rotaxanes
from a primary amine, crown ether and electrophile. J. Am. Chem. Soc.
2018, 140, 6049−6052. (b) Tian, C.; Fielden, S. D. P.; Whitehead, G. F. S.;
Vitorica-Yrezabal, I. J.; Leigh, D. A. Weak functional group interactions
revealed through metal-free active template rotaxane synthesis. Nat.
Commun. 2020, 11, 744.
(15) (a) Hogan, J. C.; Gandour, R. D. Structural requirements for glyme
catalysis in butylaminolysis of aryl acetates in chlorobenzene. Identification
of -OCH2CH2OCH2CH2OCH2CH2O- as the optimal subunit for catalysis.
J. Org. Chem. 1991, 56, 2821–2826. (b) Basilio, N.; García-Río, L.; Mejuto,
J. C.; Pérez-Lorenzo, M. A. New reaction pathway in the ester aminolysis
catalyzed by glymes and crown ethers. J. Org. Chem. 2006, 71, 4280−4285.
(16) Chiral leaving groups have previously been employed in
asymmetric substitution reactions. See: Lepore, S. D.; Mondal, D. Recent
advances in heterolytic nucleofugal leaving groups. Tetrahedron 2007, 63,
5103–5122.
(17) Heller, D.; Buschmann, H.; Scharf, H.-D. Nonlinear temperature
behavior of product ratios in selection processes. Angew. Chem. Int. Ed.
Engl. 1996, 35, 1852–1854.
(18) Cinchona alkaloids in synthesis and catalysis: Ligands,
immobilization and organocatalysis; Eui Song, C., Ed.; Wiley-VCH Verlag
GmbH & Co. KGaA: Weinheim, 2009.
(19) (a) Hunter, C. A.; Sanders, J. K. M. The nature of π–π interactions.
J. Am. Chem. Soc. 1990, 112, 5525–5534. (b) Riwar, L.-J.; Trapp, N.; Kuhn,
B.; Diederich, F. Substituent effects in parallel displaced π–π stacking
interactions: distance matters. Angew. Chem. Int. Ed. 2017, 56, 11252–
11257.
(20) Stewart, J. J. P. Optimization of parameters for semiempirical
methods. V. Modification of NDDO approximations and application to 70
elements. J. Mol. Model. 2007, 13, 1173–1213.
Author Contributions
§These authors contributed equally.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We thank the Engineering and Physical Sciences Research Council
(EPSRC) (EP/P027067/1), the European Research Council (ERC)
(Advanced Grant No. 786630), the China 1000 Talents Plan and
East China Normal University for funding, the University of
Manchester for a studentship (to S.D.P.F.), the Diamond Light
Source (U.K.) for synchrotron beamtime on I19, the University of
Manchester mass spectrometry service for high-resolution mass
spectrometry, the Computational Shared Facility 3 (CSF3) at the
University of Manchester for computational resources, and Jing Liu
for preliminary studies. D.A.L. is a Royal Society Research
Professor.
REFERENCES
(1) (a) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond:
From Molecules to Machines; John Wiley & Sons: Hoboken, NJ, 2017. (b)
Jamieson, E. M. G.; Modicom, F.; Goldup S. M. Chirality in rotaxanes and
catenanes. Chem. Soc. Rev. 2018, 47, 5266−5311. (c) Evans, N. H. Chiral
catenanes and rotaxanes: Fundamentals and emerging applications. Chem.
Eur. J. 2018, 24, 3101–3112. (d) Nakazono, K.; Takata, T. Mechanical
chirality of rotaxanes: Synthesis and function. Symmetry 2020, 12, 144.
(2) If a prochiral or meso thread is incorporated into a rotaxane then
chirality can arise from the position of the ring on the axle. See: (a) Alvarez-
Pérez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M. Z. A chemically-
driven molecular information ratchet. J. Am. Chem. Soc. 2008, 130, 1836–
1838. (b) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. Asymmetric
catalysis with a mechanically point-chiral rotaxane. J. Am. Chem. Soc.
2016, 138, 1749–1751. (c) Dommaschk, M.; Echavarren, J.; Leigh, D. A.;
Marcos, V.; Singleton, T. A. Dynamic control of chiral space through local
symmetry breaking in a rotaxane organocatalyst. Angew. Chem. Int. Ed.
2019, 58, 14955–14958.
(3) Mechanical planar chirality can also result from confinement of an
unsymmetrical macrocycle to one side of a non-prochiral axle possessing
Dnh symmetry. See: (a) Mochizuki, Y.; Ikeyatsu, K.; Mutoh, Y.; Hosoya, S.;
Saito, S. Synthesis of mechanically planar chiral rac-[2]rotaxanes by
partitioning of an achiral [2]rotaxane: Stereoinversion induced by shuttling.
Org. Lett. 2017, 19, 4347−4350. (b) Corra, S.; de Vet, C.; Groppi, J.; La
Rosa, M.; Silvi, S.; Baroncini, M.; Credi, A. Chemical on/off switching of
mechanically planar chirality and chiral anion recognition in a [2]rotaxane
molecular shuttle. J. Am. Chem. Soc. 2019, 141, 9129−9133.
(4) For examples of other stereochemical consequences of threading,
see: (a) Fuller, A.-M. L.; Leigh, D. A.; Lusby, P. J. Sequence isomerism in
[3]rotaxanes. J. Am. Chem. Soc. 2010, 132, 4954−4959. (b) Talotta, C.;
Gaeta, C.; Qi, Z.; Schalley, C. A.; Neri, P. Pseudorotaxanes with self-sorted
sequence and stereochemical orientation. Angew. Chem. Int. Ed. 2013, 52,
7437−7441. (c) La Manna, P.; Talotta, C.; Gaeta, C.; Soriente, A.; De Rosa,
M.; Neri, P. Threading of an inherently directional calixarene wheel with
oriented ammonium axles. J. Org. Chem. 2017, 82, 8973−8983. (d) Cui, J.-
S.; Ba, Q.-K.; Ke, H.; Valkonen, A.; Rissanen, K.; Jiang, W. Directional
shuttling of a stimuli-responsive cone-like macrocycle on a single-state
symmetric dumbbell axle. Angew. Chem. Int. Ed. 2018, 57, 7809–7814. (e)
Zheng, L.-S.; Cui, J.-S.; Jiang, W. Biomimetic synchronized motion of two
interacting macrocycles in [3]rotaxane-based molecular shuttles. Angew.
Chem. Int. Ed. 2019, 58, 15136–15141. (f) Ng, A. W. H.; Yee, C.-C.; Au-
ACS Paragon Plus Environment