RSC Advances
Paper
respectively. The mobilities and threshold voltages were ob-
tained over more than 10 devices.
7 W. Zhang, J. Smith, R. Hamilton, M. Heeney, J. Kirkpatrick,
K. Song, S. E. Watkins, T. Anthopoulos and I. McCulloch, J.
Am. Chem. Soc., 2009, 131, 10814–10815.
8 Q. Zheng, B. J. Jung, J. Sun and H. E. Katz, J. Am. Chem. Soc.,
2010, 132, 5394–5404.
Fabrication and characterization of OPV devices
ITO substrates were pre-cleaned sequentially by sonicating in
a detergent bath, de-ionized water, acetone, and isopropanol at
rt, and in a boiled isopropanol bath, each for 10 min. Then, the
substrates were subjected to UV/ozone treatment at rt for 20
min. The ITO substrates masked at the electrical contacts were
coated with ZnO precursor by spin coating (3000 rpm for 30 s)
a precursor solution prepared by dissolving zinc acetate dehy-
drate (0.5 g) and ethanolamine (0.14 mL) in 5 mL of 2-
9 W. Zhang, J. Smith, S. E. Watkins, R. Gysel, M. McGehee,
A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos and
M. Heeney, J. Am. Chem. Soc., 2010, 132, 11437–11439.
10 Y.-C. Chen, C.-Y. Yu, Y.-L. Fan, L.-I. Hung, C.-P. Chen and
C. Ting, Chem. Commun., 2010, 46, 6503–6505.
11 R. S. Ashraf, B. C. Schroeder, H. A. Bronstein, Z. Huang,
S. Thomas, R. J. Kline, C. J. Brabec, P. Rannou,
T. D. Anthopoulos, J. R. Durrant and I. McCulloch, Adv.
Mater., 2013, 25, 2029–2034.
12 Z. Fei, R. S. Ashraf, Z. Huang, J. Smith, R. J. Kline,
P. D'Angelo, T. D. Anthopoulos, J. R. Durrant, I. McCulloch
and M. Heeney, Chem. Commun., 2012, 48, 2955–2957.
13 Y. Li, Y. Wu and B. S. Ong, Macromolecules, 2006, 39, 6521–
6527.
14 J. Lu, F. Liang, N. Drolet, J. Ding, Y. Tao and R. Movileanu,
Chem. Commun., 2008, 5315–5317.
15 J.-H. Tsai, C.-C. Chueh, M.-H. Lai, C.-F. Wang, W.-C. Chen,
B.-T. Ko and C. Ting, Macromolecules, 2009, 42, 1897–
1905.
16 J. E. Donaghey, R. S. Ashraf, Y. Kim, Z. G. Huang,
C. B. Nielsen, W. Zhang, B. Schroeder, C. R. G. Grenier,
C. T. Brown, P. D'Angelo, J. Smith, S. Watkins, K. Song,
T. D. Anthopoulos, J. R. Durrant, C. K. Williams and
I. McCulloch, J. Mater. Chem., 2011, 21, 18744–18752.
17 C.-A. Tseng, J.-S. Wu, T.-Y. Lin, W.-S. Kao, C.-E. Wu,
S.-L. Hsu, Y.-Y. Liao, C.-S. Hsu, H.-Y. Huang, Y.-Z. Hsieh
and Y.-J. Cheng, Chem.–Asian J., 2012, 7, 2102–2110.
18 J.-S. Wu, C.-T. Lin, C.-L. Wang, Y.-J. Cheng and C.-S. Hsu,
Chem. Mater., 2012, 24, 2391–2399.
ꢁ
methoxyethanol. They were then baked in air at 200 C for 30
min, then rinsed with acetone and isopropanol, and dried in
a glove box. The active layer was deposited in a glove box by spin
ꢁ
coating hot (100 C) DCB solution containing the polymer and
PC71BM with the weight ratio of 1 : 2 at 600 rpm for 20 s. MoOx
(7.5 nm) and Ag (100 nm) were deposited sequentially by
thermal evaporation under ꢂ10ꢀ5 Pa, where the active area of
the cells was 0.16 cm2. J–V characteristics of the devices were
measured with a Keithley 2400 source measure unit in nitrogen
atmosphere under 1 Sun (AM1.5G) conditions using a solar
simulator (SAN-EI Electric, XES-40S1, 1000 W mꢀ2). The light
intensity for the J–V measurements was calibrated with a refer-
ence PV cell (Konica Minolta AK-100 certied by the National
Institute of Advanced Industrial Science and Technology,
Japan). More than 10 devices were analysed. EQE spectra were
measured with a Spectral Response Measuring System (Soma
Optics, Ltd., S-9241).
Acknowledgements
This work was nancially supported by Grants-in-Aid for
Scientic Research (No. 24685030) from MEXT, Japan. High-
resolution mass spectrometry and elemental analysis was
carried out at the Materials Characterization Support Unit in
RIKEN, Advanced Technology Support Division. GIXD experi-
ments were performed at the BL19B2 of SPring-8 with the
approval of the Japan Synchrotron Radiation Research Institute
(JASRI) (Proposal No. 2013B1719).
19 L. Biniek, B. C. Schroeder, J. E. Donaghey, N. Yaacobi-Gross,
R. S. Ashraf, Y. W. Soon, C. B. Nielsen, J. R. Durrant,
T. D. Anthopoulos and I. McCulloch, Macromolecules, 2013,
46, 727–735.
20 I. McCulloch, R. S. Ashraf, L. Biniek, H. Bronstein,
C. Combe, J. E. Donaghey, D. I. James, C. B. Nielsen,
B. C. Schroeder and W. Zhang, Acc. Chem. Res., 2012, 45,
714–722.
21 M. M. Wienk, M. Turbiez, J. Gilot and R. A. J. Janssen, Adv.
Mater., 2008, 20, 2556–2560.
References
¨
1 H. Klauk, Organic Electronics II: More Materials and 22 L. Burgi, M. Turbiez, R. Pfeiffer, F. Bienewald, H.-J. Kirner
Applications, Wiley-VCH Verlag GmbH
Weinheim, Germany, 2012.
2 G. Hadziioannou and G. G. Malliaras, Semiconducting
&
Co. KGaA,
and C. Winnewisser, Adv. Mater., 2008, 20, 2217–2224.
23 R. Stalder, J. Mei and J. R. Reynolds, Macromolecules, 2010,
43, 8348–8352.
Polymers, Chemistry, Physics and Engineering, Wiley-VCH 24 T. Lei, Y. Cao, Y. Fan, C.-J. Liu, S.-C. Yuan and J. Pei, J. Am.
Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.
3 A. Facchetti, Chem. Mater., 2011, 23, 733–758.
4 I. Osaka and R. D. McCullough, Acc. Chem. Res., 2008, 41,
1202–1214.
Chem. Soc., 2011, 133, 6099–6101.
25 C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo,
´
P. M. Beaujuge and J. M. J. Frechet, J. Am. Chem. Soc.,
2010, 132, 7595–7597.
´
´
5 P. M. Beaujuge and J. M. J. Frechet, J. Am. Chem. Soc., 2011, 26 Y. Zou, A. Najari, P. Berrouard, S. Beaupre, B. R. Aich, Y. Tao
133, 20009–20029.
and M. Leclerc, J. Am. Chem. Soc., 2010, 132, 5330–5331.
¨
6 S. Setayesh, D. Marsitzky and K. Mullen, Macromolecules,
2000, 33, 2016–2020.
16446 | RSC Adv., 2016, 6, 16437–16447
This journal is © The Royal Society of Chemistry 2016