C O M M U N I C A T I O N S
Table 2. C-O Bond Cleavage of Various 2-Aryloxy-1-arylethanols
Scheme 2. (a) Blocking Formation of 4a Prevents C-O Cleavage;
(b) Hydrosilylation of 4a Yields C-O Cleavage
substrate
Ar
Ar′
yield (%)a
2a
2b
2c
2d
2e
C6H5
C6H5
C6H5
4-(CH3O)-C6H4
3,4-(CH3O) -C6H3
C6H5
98
88
62
98
89
2-(CH3O)-C6H4
2,6-(CH3O)2-C6H3
C6H5
2-(CH3O)-C6H4
a Average isolated yield of the corresponding ketone based on two
duplicate experiments.
radical inhibitor 2,6-di-(tert-butyl)-4-methylphenol (BHT) has no
effect on the apparent half-life, or yield, for the disproportionation
of 2b (t1/2 ) 2 h, 135 °C, [2b] ) 0.1 M). Finally, hydrosilylation
of ketone 4a with Et3SiD forms acetophenone with 55% deuterium
incorporation at the R-keto position as confirmed by 2H NMR. The
selective deuteration result is consistent with a mechanism in which
a ruthenium enolate (6) is formed and trapped by the deuterated
silane.13 These experiments indicate that radical and elimination
mechanisms are not likely responsible for the observed transforma-
tion and support the proposed model outlined in Figure 2.7b,12
Future work will be directed toward the investigation of the
elementary steps of the organometallic C-O activation process as
well as applications to natural lignin and other model systems.
monomer in 99% isolated yield demonstrates the utility of the
catalytic system for depolymerizing polyethers that are in the
molecular weight range of isolated lignin.
Scheme 1. Depolymerization of Lignin-Related Polymer
The proposed mechanism for the transformation is shown in
Figure 2. It begins with a well-known Ru-catalyzed dehydrogenative
equilibrium between a benzylic alcohol and the corresponding aryl
ketone.10 This is followed by loss of HX from the catalyst precursor
and formation of Ru(0) complex 5. C-O activation in 5 leads to
Ru-enolate (6). Hydrogenation of 6 yields a Ru-alkoxide (7)
followed by reductive elimination of phenol and association with
4 to close the cycle.
Acknowledgment. We gratefully acknowledge the Energy
Biosciences Institute (Grant No. OO7J37) for financial support.
J.M.N. thanks the National Institutes of Health for support through
the Ruth L. Kirschstein Postdoctoral Fellowship (F32GM084597).
Supporting Information Available: Substrate syntheses and ex-
perimental procedures. This material is available free of charge via the
References
(1) (a) Ragauskas, A.; Williams, C.; Davison, B.; Britovsek, G.; Cairney, J.;
Eckert, C.; Frederick, W.; Hallett, J.; Leak, D.; Liotta, C.; Mielenz, J.;
Murphy, R.; Templer, R.; Tschaplinski, T. Science 2006, 311, 484. (b)
Chang, M. C. Y. Curr. Opin. Chem. Biol. 2007, 11, 677.
(2) Regalbuto, J. R. Science 2009, 325, 822.
(3) Ohlrogge, J.; Allen, D.; Berguson, B.; DellaPenna, D.; Shachar-Hill, Y.;
Stymne, S. Science 2009, 324, 1019.
(4) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M.
Chem. ReV. 2010, 110, 3552.
(5) For variations in lignin structure, see: (a) Bunzel, M.; Ralph, J. J. Agric.
Food Chem. 2006, 54, 8352. (b) del Rio, J. C.; Marques, G.; Rencoret, J.;
Martinez, A. T.; Gutierrez, A. J. Agric. Food Chem. 2007, 55, 5461. (c)
Ibarra, D.; Isabel Chavez, M.; Rencoret, J.; Del Rio, J. C.; Gutierrez, A.;
Romero, J.; Camarero, S.; Martinez, M. J.; Jimenez-Barbero, J.; Martinez,
A. T. J. Agric. Food Chem. 2007, 55, 3477.
(6) Detailed characterization of native milled wood lignin isolated from M.
giganteus indicates that 93% of the polymeric linkages are ꢀ-[O]-4′-
glycerolaryl ethers. Villaverde, J. J.; Li, J.; Ek, M.; Ligero, P.; de Vega,
A. J. Agric. Food Chem. 2009, 57, 6262.
(7) (a) Cyr, A.; Chiltz, F.; Jeanson, P.; Martel, A.; Brossard, L.; Lessard, J.;
Menard, H. Can. J. Chem. 2000, 78, 307. (b) Kandanarachchi, P.; Autrey,
T.; Franz, J. J. Org. Chem. 2002, 67, 7937. (c) Kim, Y. S.; Chang, H.-m.;
Kadla, J. F. Holzforschung 2008, 62, 38.
Figure 2. Mechanistic rationale for C-O bond cleavage.
In situ monitoring of the reaction time course for 2-phenoxy-
phenethanol (2a) suggests that 2-phenoxyacetophenone (4a) is an
intermediate. Blocking the dehydrogenation process that forms
intermediate 4a prevents the C-O cleavage reaction (Scheme 2a)
under conditions in which the C-O bond cleavage functions. Using
silane as a surrogate for molecular hydrogen, intermediate 4a is
reduced to yield the corresponding C-O bond-cleavage products
in 89% yield (Scheme 2b). Together, these experiments support
the intermediacy of R-aryloxy ketones (4).
(8) For some recent examples, see: (a) Owston, N. A.; Parker, A. J.; Williams,
J. M. J. Chem. Commun. 2008, 624. (b) Shibahara, F.; Bower, J. F.; Krische,
M. J. J. Am. Chem. Soc. 2008, 180, 14120.
(9) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani, N.; Murai, S. J. Am. Chem.
Soc. 2004, 126, 2706.
(10) Kishimoto, T.; Uraki, Y.; Ubukata, M. Org. Biomol. Chem. 2005, 3, 1067.
(11) Gaspar, A. R.; Gamelas, J. A. F.; Evtuguin, D. V.; Neto, C. P. Green Chem.
2007, 9, 717.
(12) Litwinienko, G.; Ingold, K. U. Acc. Chem. Res. 2007, 40, 222.
(13) For C-O activation mechanisms, see: (a) Choi, J.; Choliy, Y.; Zhang, X.;
Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2009,
131, 15627. (b) Ueno, S.; Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am.
Chem. Soc. 2006, 128, 16516.
Alternate mechanisms that do not proceed through the R-aryloxy
ketone are not consistent with the experimental observations
summarized in Scheme 2. These mechanisms include a free-radical
mechanism initiated by the formation of a benzyl radical11 or the
elimination of phenol to yield styryl enol ethers. Compound 8 is
theoretically able to participate in both mechanisms and yet is not
converted to product under the reaction conditions. Moreover, the
JA106101F
9
J. AM. CHEM. SOC. VOL. 132, NO. 36, 2010 12555